TY - JOUR
T1 - A Balanced Translocation in Kallmann Syndrome Implicates a Long Noncoding RNA, RMST, as a GnRH Neuronal Regulator
AU - Stamou, Maria
AU - Ng, Shi Yan
AU - Brand, Harrison
AU - Wang, Harold
AU - Plummer, Lacey
AU - Best, Lyle
AU - Havlicek, Steven
AU - Hibberd, Martin
AU - Khor, Chiea Chuen
AU - Gusella, James
AU - Balasubramanian, Ravikumar
AU - Talkowski, Michael
AU - Stanton, Lawrence W.
AU - Crowley, William F.
N1 - Publisher Copyright:
© 2019 Endocrine Society 2019.
PY - 2020/1/8
Y1 - 2020/1/8
N2 - Context: Kallmann syndrome (KS) is a rare, genetically heterogeneous Mendelian disorder. Structural defects in KS patients have helped define the genetic architecture of gonadotropin-releasing hormone (GnRH) neuronal development in this condition. Objective: Examine the functional role a novel structural defect affecting a long noncoding RNA (lncRNA), RMST, found in a KS patient. Design: Whole genome sequencing, induced pluripotent stem cells and derived neural crest cells (NCC) from the KS patient were contrasted with controls. Setting: The Harvard Reproductive Sciences Center, Massachusetts General Hospital Center for Genomic Medicine, and Singapore Genome Institute. Patient: A KS patient with a unique translocation, t(7;12)(q22;q24). Interventions/Main Outcome Measure/Results: A novel translocation was detected affecting the lncRNA, RMST, on chromosome 12 in the absence of any other KS mutations. Compared with controls, the patient's induced pluripotent stem cells and NCC provided functional information regarding RMST. Whereas RMST expression increased during NCC differentiation in controls, it was substantially reduced in the KS patient's NCC coincident with abrogated NCC morphological development and abnormal expression of several "downstream" genes essential for GnRH ontogeny (SOX2, PAX3, CHD7, TUBB3, and MKRN3). Additionally, an intronic single nucleotide polymorphism in RMST was significantly implicated in a genome-wide association study associated with age of menarche. Conclusions: A novel deletion in RMST implicates the loss of function of a lncRNA as a unique cause of KS and suggests it plays a critical role in the ontogeny of GnRH neurons and puberty.
AB - Context: Kallmann syndrome (KS) is a rare, genetically heterogeneous Mendelian disorder. Structural defects in KS patients have helped define the genetic architecture of gonadotropin-releasing hormone (GnRH) neuronal development in this condition. Objective: Examine the functional role a novel structural defect affecting a long noncoding RNA (lncRNA), RMST, found in a KS patient. Design: Whole genome sequencing, induced pluripotent stem cells and derived neural crest cells (NCC) from the KS patient were contrasted with controls. Setting: The Harvard Reproductive Sciences Center, Massachusetts General Hospital Center for Genomic Medicine, and Singapore Genome Institute. Patient: A KS patient with a unique translocation, t(7;12)(q22;q24). Interventions/Main Outcome Measure/Results: A novel translocation was detected affecting the lncRNA, RMST, on chromosome 12 in the absence of any other KS mutations. Compared with controls, the patient's induced pluripotent stem cells and NCC provided functional information regarding RMST. Whereas RMST expression increased during NCC differentiation in controls, it was substantially reduced in the KS patient's NCC coincident with abrogated NCC morphological development and abnormal expression of several "downstream" genes essential for GnRH ontogeny (SOX2, PAX3, CHD7, TUBB3, and MKRN3). Additionally, an intronic single nucleotide polymorphism in RMST was significantly implicated in a genome-wide association study associated with age of menarche. Conclusions: A novel deletion in RMST implicates the loss of function of a lncRNA as a unique cause of KS and suggests it plays a critical role in the ontogeny of GnRH neurons and puberty.
KW - human
KW - long non-coding RNA
KW - mutations
KW - reproduction
UR - http://www.scopus.com/inward/record.url?scp=85081142050&partnerID=8YFLogxK
U2 - 10.1210/clinem/dgz011
DO - 10.1210/clinem/dgz011
M3 - Article
C2 - 31628846
AN - SCOPUS:85081142050
SN - 0021-972X
VL - 105
JO - Journal of Clinical Endocrinology and Metabolism
JF - Journal of Clinical Endocrinology and Metabolism
IS - 3
M1 - dgz011
ER -