A BFF-Based Attention Mechanism for Trajectory Estimation in mmWave MIMO Communications

Mohammad Shamsesalehi, Mahmoud Ahmadian Attari, Mohammad Amin Maleki Sadr, Benoit Champagne, Marwa Qaraqe*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper explores a novel Neural Network (NN) architecture suitable for Beamformed Fingerprint (BFF) localization in a millimeter-wave (mmWave) multiple-input multiple-output (MIMO) outdoor system. The mmWave frequency bands have attracted significant attention due to their precise timing measurements, making them appealing for applications demanding accurate device localization and trajectory estimation. The proposed NN architecture captures BFF sequences originating from various user paths, and through the application of learning mechanisms, subsequently estimates these trajectories. Specifically, we propose a method for trajectory estimation, employing a transformer network (TN) that relies on attention mechanisms. This TN-based approach estimates wireless device trajectories using BFF sequences recorded within a mmWave MIMO outdoor system. To validate the efficacy of our proposed approach, numerical experiments are conducted using a comprehensive dataset of radio measurements in an outdoor setting, complemented with ray tracing to simulate wireless signal propagation at 28 GHz. The results illustrate that the TN-based trajectory estimator outperforms other methods from the existing literature and possesses the ability to generalize effectively to new trajectories outside the training dataset.

Original languageEnglish
Title of host publication2024 IEEE Wireless Communications and Networking Conference, WCNC 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350303582
DOIs
Publication statusPublished - 24 Apr 2024
Event25th IEEE Wireless Communications and Networking Conference, WCNC 2024 - Dubai, United Arab Emirates
Duration: 21 Apr 202424 Apr 2024

Publication series

NameIEEE Wireless Communications and Networking Conference, WCNC
ISSN (Print)1525-3511

Conference

Conference25th IEEE Wireless Communications and Networking Conference, WCNC 2024
Country/TerritoryUnited Arab Emirates
CityDubai
Period21/04/2424/04/24

Keywords

  • Localization
  • MIMO
  • Millimeter Wave
  • Trajectory Estimation
  • Transformer Networks

Fingerprint

Dive into the research topics of 'A BFF-Based Attention Mechanism for Trajectory Estimation in mmWave MIMO Communications'. Together they form a unique fingerprint.

Cite this