A dual role for planar cell polarity genes in ciliated cells

Camille Boutin, Paul Labedan, Jordane Dimidschstein, Fabrice Richard, Harold Cremer, Philipp André, Yingzi Yang, Mireille Montcouquiol, Andre M. Goffinet, Fadel Tissir*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

111 Citations (Scopus)

Abstract

In the nervous system, cilia dysfunction perturbs the circulation of the cerebrospinal fluid, thus affecting neurogenesis and brain homeostasis. A role for planar cell polarity (PCP) signaling in the orientation of cilia (rotational polarity) and ciliogenesis is established. However, whether and how PCP regulates cilia positioning in the apical domain (translational polarity) in radial progenitors and ependymal cells remain unclear. By analysis of a large panel of mutant mice, we show that two PCP signals are operating in ciliated cells. The first signal, controlled by cadherin, EGF-like, laminin G-like, seven-pass, G-type receptor (Celsr) 2, Celsr3 , Frizzled3 (Fzd3) and Van Gogh like2 (Vangl2 ) organizes multicilia in individual cells (single-cell polarity), whereas the second signal, governed by Celsr1, Fzd3, and Vangl2, coordinates polarity between cells in both radial progenitors and ependymal cells (tissue polarity). Loss of either of these signals is associated with specific defects in the cytoskeleton. Our data reveal unreported functions of PCP and provide an integrated view of planar polarization of the brain ciliated cells.

Original languageEnglish
Pages (from-to)E3129-E3138
JournalProceedings of the National Academy of Sciences of the United States of America
Volume111
Issue number30
DOIs
Publication statusPublished - 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'A dual role for planar cell polarity genes in ciliated cells'. Together they form a unique fingerprint.

Cite this