@inproceedings{aee71842f7174dc19ebfacc94e311f78,
title = "A GIS-based Optimal Facility Location Framework for Fast Electric Vehicle Charging Stations",
abstract = "Deeper decarbonization of the transport sector requires building a wide coverage electric vehicle charging network that can meet driver's mobility patterns and refueling habits in a seamless manner. Currently, major market players mainly deploy chargers at existing public parking spaces at hotels, shopping centers, etc. On the other hand, gas/petroleum retail business is a century-old industry and 'optimized' to serve the refueling needs of the drivers and they come to the forefront as 'good' locations to site chargers. To that end, this paper addresses the fast charging station location problem in an urban environment. The optimization problem is formulated as a maximum coverage location problem (MCLP) and existing locations of petrol/fuel stations are considered as candidate locations. Using QGIS software, a geographic information system (GIS) based platform is developed and integrated with a linear-programming relaxation based MCLP algorithm developed in Python. The city of Raleigh, North Carolina with actual geo-spatial data is chosen as a case study. Both census population and highway traffic data are considered as demand metrics to mimic drivers without dedicated chargers and vehicles on highways who need a recharge. A number of evaluations are performed to explore the trade-off between the number of locations and the physical coverage space. Furthermore, comparative analysis show that locating fast chargers in existing petrol stations improve demand coverage by more than 50 % when compared to existing fast charging station locations.",
keywords = "electric vehicles, facility location, fast chargers, maximum coverage problem, petrol stations",
author = "Usman Zafar and Bayram, {I. Safak} and Sertac Bayhan",
note = "Publisher Copyright: {\textcopyright} 2021 IEEE.; 30th IEEE International Symposium on Industrial Electronics, ISIE 2021 ; Conference date: 20-06-2021 Through 23-06-2021",
year = "2021",
month = jun,
day = "20",
doi = "10.1109/ISIE45552.2021.9576448",
language = "English",
series = "IEEE International Symposium on Industrial Electronics",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "Proceedings of 2021 IEEE 30th International Symposium on Industrial Electronics, ISIE 2021",
address = "United States",
}