A scalable approach using a gC3N4-covalent organic framework hybrid catalyst towards sustainable hydrogen production from seawater and wastewater

Kiran Asokan, T. M. Bhagyasree, George Devasia, Sailaja Krishnamurty, Sabah Solim, Lina Rueda, Dhabia M. Al-Mohannadi, Mohammed Al-Hashimi, Konstantinos Kakosimos, Sukumaran Santhosh Babu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The photocatalytic generation of H2 using covalent organic frameworks (COFs) is gaining more interest. While numerous reports have focused on the production of H2 from deionized water using COFs, the inability to produce H2 from industrial wastewater or seawater is a common limitation in many reported catalysts. Additionally, many of these reports lack a clear path to scale up the catalyst synthesis. In this study, we explore the prospect of hybridizing a COF with gC3N4 to create a robust photocatalyst for efficient H2 generation. This hybrid exhibits outstanding performance not only in deionized water, but also in wastewater, and simulated seawater. Furthermore, we explore the feasibility of the bulk-scale synthesis and successfully produce a 20 g hybrid catalyst in a single batch, and the synthesis method is scalable to achieve the commercial target. Remarkably, a maximum HER rate of 94 873 μmol g−1 h−1 and 109 125 μmol g−1 h−1 was obtained for the hybrid catalyst from industrial wastewater and simulated seawater, respectively. The performance of bulk-scale batches closely matches that of the small-scale ones. This research paves the way for the utilization of organic photocatalysts on a commercial scale, offering a promising solution for sustainable large-scale H2 production.

Original languageEnglish
Pages (from-to)13381-13388
Number of pages8
JournalChemical Science
Volume15
Issue number33
DOIs
Publication statusPublished - 18 Jul 2024
Externally publishedYes

Fingerprint

Dive into the research topics of 'A scalable approach using a gC3N4-covalent organic framework hybrid catalyst towards sustainable hydrogen production from seawater and wastewater'. Together they form a unique fingerprint.

Cite this