TY - GEN
T1 - A short length window-based method for islanding detection in distributed generation
AU - Alam, M. R.
AU - Muttaqi, K. M.
AU - Bouzerdoum, Abdesselam
PY - 2012
Y1 - 2012
N2 - Distributed generation (DG) has recently drawn the interest to meet the increased load demand with minimum investment. But cohesive operation of these DG sources, in a grid-connected environment, gives rise to several issues during abnormal conditions of the utility system. This paper addresses the detection method of one such crucial event which is islanding. A short length window based Mahalanobis Distance method has been proposed in this paper to detect islanding. A trade-off between computational time and accuracy has been maintained to make it reliable and acceptable. In this method, network parameters such as rate of change of frequency (ROCOF), rate of change of voltage (ROCOV), rate of change of real power (ROCOP) and rate of change of reactive power (ROCOQ) have been extracted from the voltage and current signal. Standard Deviations of the network features have been used as parameters for islanding and non-islanding events. These parameters have been classified with the proposed Mahalanobis Distance method incorporating short length window. The proposed method has been simulated in a test distribution system and it has been compared with Support Vector Machine (SVM), and Feed-forward Multi-layer Neural Network (FFML NN) classifiers to show its reliability and acceptability.
AB - Distributed generation (DG) has recently drawn the interest to meet the increased load demand with minimum investment. But cohesive operation of these DG sources, in a grid-connected environment, gives rise to several issues during abnormal conditions of the utility system. This paper addresses the detection method of one such crucial event which is islanding. A short length window based Mahalanobis Distance method has been proposed in this paper to detect islanding. A trade-off between computational time and accuracy has been maintained to make it reliable and acceptable. In this method, network parameters such as rate of change of frequency (ROCOF), rate of change of voltage (ROCOV), rate of change of real power (ROCOP) and rate of change of reactive power (ROCOQ) have been extracted from the voltage and current signal. Standard Deviations of the network features have been used as parameters for islanding and non-islanding events. These parameters have been classified with the proposed Mahalanobis Distance method incorporating short length window. The proposed method has been simulated in a test distribution system and it has been compared with Support Vector Machine (SVM), and Feed-forward Multi-layer Neural Network (FFML NN) classifiers to show its reliability and acceptability.
KW - Islanding detection
KW - distributed generation
KW - rate of change of frequency
KW - rate of change of reactive power
KW - rate of change of real power
KW - rate of change of voltage
UR - http://www.scopus.com/inward/record.url?scp=84865102003&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2012.6252483
DO - 10.1109/IJCNN.2012.6252483
M3 - Conference contribution
AN - SCOPUS:84865102003
SN - 9781467314909
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2012 International Joint Conference on Neural Networks, IJCNN 2012
T2 - 2012 Annual International Joint Conference on Neural Networks, IJCNN 2012, Part of the 2012 IEEE World Congress on Computational Intelligence, WCCI 2012
Y2 - 10 June 2012 through 15 June 2012
ER -