TY - JOUR
T1 - A techno-economic-environmental study evaluating the potential of oxygen-steam biomass gasification for the generation of value-added products
AU - AlNouss, Ahmed
AU - McKay, Gordon
AU - Al-Ansari, Tareq
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2019/9/15
Y1 - 2019/9/15
N2 - The production of renewable chemicals and fuels is driving modern society towards a type of sustainable development which involves a decreasing dependency on fossil fuels and the minimisation of waste. Biomass, a waste by-product from the urban environment, is a carbon dioxide neutral organic fuel that can potentially serve as a feedstock for the production of sustainable power and heat. Gasification is preferred over the other thermal conversion options for biomass processing whereby the product synthesis gas can be utilised to power generators/turbines and generate clean energy, ammonia and methanol. Incidentally, efficient and economically sound biomass driven supply chains can be integrated into an existing petrochemical infrastructure. Moreover, the potential production volumes of fuels and green chemicals can also be increased by the addition of multiple biomass sources, thereby creating potential positive scale effects. This study proposes a new poly-generation process that utilises multiple sources of biomass feedstock to produce high quality urea, methanol, Fisher-Tropsch liquids and power. Four flowsheet configurations are simulated using Aspen Plus software and the built-in capabilities of the activated analysis using Aspen Process Economic Analyzer and Aspen Energy Analyzer to perform the economic, energy and environmental impact calculations. The results demonstrate that the methanol production technique is the most economic process pathway with a net profit of approximately $0.035 per kg of biomass input, whilst the urea process pathway presents the lowest environmental impact solution with approximately 0.71 kg of CO2-e per kg of biomass input. These results are relative and can be analysed from different perspectives based on the market demand of the products and their applications and local need. For instance, considering at the economic and environmental indicators relative to the production capacity, production of liquid fuels achieve net profits of approximately $0.27 per kg of product, whilst urea production demonstrates the lowest environmental emissions of approximately 3.93 kg of CO2-e per kg of product.
AB - The production of renewable chemicals and fuels is driving modern society towards a type of sustainable development which involves a decreasing dependency on fossil fuels and the minimisation of waste. Biomass, a waste by-product from the urban environment, is a carbon dioxide neutral organic fuel that can potentially serve as a feedstock for the production of sustainable power and heat. Gasification is preferred over the other thermal conversion options for biomass processing whereby the product synthesis gas can be utilised to power generators/turbines and generate clean energy, ammonia and methanol. Incidentally, efficient and economically sound biomass driven supply chains can be integrated into an existing petrochemical infrastructure. Moreover, the potential production volumes of fuels and green chemicals can also be increased by the addition of multiple biomass sources, thereby creating potential positive scale effects. This study proposes a new poly-generation process that utilises multiple sources of biomass feedstock to produce high quality urea, methanol, Fisher-Tropsch liquids and power. Four flowsheet configurations are simulated using Aspen Plus software and the built-in capabilities of the activated analysis using Aspen Process Economic Analyzer and Aspen Energy Analyzer to perform the economic, energy and environmental impact calculations. The results demonstrate that the methanol production technique is the most economic process pathway with a net profit of approximately $0.035 per kg of biomass input, whilst the urea process pathway presents the lowest environmental impact solution with approximately 0.71 kg of CO2-e per kg of biomass input. These results are relative and can be analysed from different perspectives based on the market demand of the products and their applications and local need. For instance, considering at the economic and environmental indicators relative to the production capacity, production of liquid fuels achieve net profits of approximately $0.27 per kg of product, whilst urea production demonstrates the lowest environmental emissions of approximately 3.93 kg of CO2-e per kg of product.
KW - Biomass Gasification
KW - Enviro-Economic
KW - Pareto Analysis
KW - Poly-generation
KW - Value-added products
UR - http://www.scopus.com/inward/record.url?scp=85067572747&partnerID=8YFLogxK
U2 - 10.1016/j.enconman.2019.06.019
DO - 10.1016/j.enconman.2019.06.019
M3 - Article
AN - SCOPUS:85067572747
SN - 0196-8904
VL - 196
SP - 664
EP - 676
JO - Energy Conversion and Management
JF - Energy Conversion and Management
ER -