A virtual machine consolidation framework for MapReduce enabled computing clouds

Zhe Huang*, Danny H.K. Tsang, James She

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Citations (Scopus)

Abstract

In nowadays computing clouds, it is of the cloud providers' economic interests to correctly consolidate the workload of the virtual machines (VMs) into the suitable physical servers in the cloud data center in order to minimize the total maintenance cost. However, during the consolidation process, sufficient protection should be provided to the service level agreement (SLA) of the VMs. In this paper, the VM consolidation problem for MapReduce enabled computing clouds has been investigated. In the MapReduce enabled computing clouds, MapReduce jobs are carried out by homogeneous MapReduce VM instances that have identical hardware resource. Two resource allocation schemes with corresponding SLA constraints for the MapReduce VMs and the non-MapReduce VMs are proposed. Based on these schemes, the VM consolidation problem is modeled as an integer nonlinear optimization problem and an efficient algorithm has been proposed to locate its solutions. The results show that better VM consolidation performance can be achieved by colocating MapReduce instances together with non-MapReduce instances in the same set of physical servers.

Original languageEnglish
Title of host publicationFinal Program - 2012 24th International Teletraffic Congress, ITC 24
Pages73-80
Number of pages8
Publication statusPublished - 2012
Externally publishedYes
Event2012 24th International Teletraffic Congress, ITC 2012 - Krakow, Poland
Duration: 4 Sept 20127 Sept 2012

Publication series

NameFinal Program - 2012 24th International Teletraffic Congress, ITC 24

Conference

Conference2012 24th International Teletraffic Congress, ITC 2012
Country/TerritoryPoland
CityKrakow
Period4/09/127/09/12

Fingerprint

Dive into the research topics of 'A virtual machine consolidation framework for MapReduce enabled computing clouds'. Together they form a unique fingerprint.

Cite this