@inproceedings{dfbdafdf48ed4297be20ae5b19519d7c,
title = "Adult Content Detection on Arabic Twitter: Analysis and Experiments",
abstract = "With Twitter being one of the most popular social media platforms in the Arab region, it is not surprising to find accounts that post adult content in Arabic tweets; despite the fact that these platforms dissuade users from such content. In this paper, we present a dataset of Twitter accounts that post adult content. We perform an in-depth analysis of the nature of this data and contrast it with normal tweet content. Additionally, we present extensive experiments with traditional machine learning models, deep neural networks and contextual embeddings to identify such accounts. We show that from user information alone, we can identify such accounts with F1 score of 94.7% (macro average). With the addition of only one tweet as input, the F1 score rises to 96.8%.",
author = "Hamdy Mubarak and Sabit Hassan and Ahmed Abdelali",
note = "Publisher Copyright: {\textcopyright} WANLP 2021 - 6th Arabic Natural Language Processing Workshop; 6th Arabic Natural Language Processing Workshop, WANLP 2021 ; Conference date: 19-04-2021",
year = "2021",
language = "English",
series = "WANLP 2021 - 6th Arabic Natural Language Processing Workshop, Proceedings of the Workshop",
publisher = "Association for Computational Linguistics (ACL)",
pages = "136--144",
editor = "Nizar Habash and Houda Bouamor and Hazem Hajj and Walid Magdy and Wajdi Zaghouani and Fethi Bougares and Nadi Tomeh and Farha, {Ibrahim Abu} and Samia Touileb",
booktitle = "WANLP 2021 - 6th Arabic Natural Language Processing Workshop, Proceedings of the Workshop",
address = "United States",
}