TY - JOUR
T1 - An Analogue of Grubbs Third-Generation Catalyst with Fluorophilic Pyridine Ligands
T2 - Fluorous/Organic Phase-Transfer Activation of Ring-Closing Alkene Metathesis
AU - Balogh, Janos
AU - Hlil, Antisar R.
AU - Su, Haw Lih
AU - Xi, Zhenxing
AU - Bazzi, Hassan S.
AU - Gladysz, John A.
N1 - Publisher Copyright:
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2016/1/7
Y1 - 2016/1/7
N2 - The title catalyst (H2IMes)[3,5-NC5H3(CH2CH2Rf8)2]2(Cl)2Ru(=CHPh) [H2IMes=1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene, Rf8=(CF2)7CF3] was prepared from the fluorous pyridine 3,5-NC5H3(CH2CH2Rf8)2 (2.1 equiv.) and the pyridine complex (H2IMes)(NC5H5)2(Cl)2Ru(=CHPh). 3,5-NC5H3(CH2CH2Rf8)2 was synthesized by a Heck reaction of 3,5-dibromopyridine and the fluorous alkene H2C=CHRf8 [2.4 equiv.; Pd(OAc)2 (cat.), n-Bu4N+ Br-/NaOAc (2.0 equiv.)], followed by hydrogenation. The catalyst shows dramatic rate accelerations in the ring-closing metatheses of α,ω-dienes under fluorous/organic liquid/liquid biphasic conditions [e.g., perfluoro(methyldecalin)/CD2Cl2] relative to rates under monophasic organic conditions (e.g., CD2Cl2). These catalysts require initial dissociation of the pyridine ligands to generate the active species, which can either combine with an alkene (productive) or recombine with a pyridine (unproductive). In the case of (H2IMes)[3,5-NC5H2(CH2CH2Rf8)2]2(Cl)2Ru(=CHPh), fluorophilic 3,5-NC5H3(CH2CH2Rf8)2 transfers to the fluorous phase, in accord with its CF3C6F11/toluene partition coefficient [93.9:6.1 vs. 39.8:60.2 for (H2IMes)[3,5-NC5H3(CH2CH2Rf8)2]2(Cl)2Ru(=CHPh)], which decreases the fraction of unproductive events.
AB - The title catalyst (H2IMes)[3,5-NC5H3(CH2CH2Rf8)2]2(Cl)2Ru(=CHPh) [H2IMes=1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene, Rf8=(CF2)7CF3] was prepared from the fluorous pyridine 3,5-NC5H3(CH2CH2Rf8)2 (2.1 equiv.) and the pyridine complex (H2IMes)(NC5H5)2(Cl)2Ru(=CHPh). 3,5-NC5H3(CH2CH2Rf8)2 was synthesized by a Heck reaction of 3,5-dibromopyridine and the fluorous alkene H2C=CHRf8 [2.4 equiv.; Pd(OAc)2 (cat.), n-Bu4N+ Br-/NaOAc (2.0 equiv.)], followed by hydrogenation. The catalyst shows dramatic rate accelerations in the ring-closing metatheses of α,ω-dienes under fluorous/organic liquid/liquid biphasic conditions [e.g., perfluoro(methyldecalin)/CD2Cl2] relative to rates under monophasic organic conditions (e.g., CD2Cl2). These catalysts require initial dissociation of the pyridine ligands to generate the active species, which can either combine with an alkene (productive) or recombine with a pyridine (unproductive). In the case of (H2IMes)[3,5-NC5H2(CH2CH2Rf8)2]2(Cl)2Ru(=CHPh), fluorophilic 3,5-NC5H3(CH2CH2Rf8)2 transfers to the fluorous phase, in accord with its CF3C6F11/toluene partition coefficient [93.9:6.1 vs. 39.8:60.2 for (H2IMes)[3,5-NC5H3(CH2CH2Rf8)2]2(Cl)2Ru(=CHPh)], which decreases the fraction of unproductive events.
KW - Heck reaction
KW - fluorous
KW - metathesis
KW - phase-transfer catalysis
KW - pyridine
KW - ruthenium
UR - http://www.scopus.com/inward/record.url?scp=84955181483&partnerID=8YFLogxK
U2 - 10.1002/cctc.201500913
DO - 10.1002/cctc.201500913
M3 - Article
AN - SCOPUS:84955181483
SN - 1867-3880
VL - 8
SP - 125
EP - 128
JO - ChemCatChem
JF - ChemCatChem
IS - 1
ER -