An efficient computer-aided diagnosis model for classifying melanoma cancer using fuzzy-ID3-pvalue decision tree algorithm

Hamidreza Rokhsati, Khosro Rezaee*, Aaqif Afzaal Abbasi, Samir Brahim Belhaouari, Jana Shafi, Yang Liu, Mehdi Gheisari*, Ali Akbar Movassagh, Saeed Kosari

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Visual observation and dermoscopic analysis are the most common methods of diagnosing skin cancer. In advanced stages, melanomas spread faster and are less responsive to treatment. Because different lesions in the skin appear similar to one another and sometimes errors in identification occur, the accuracy of diagnosis will decrease significantly when the amount of received images is large. However, the proposed methods for estimating skin lesions and their separation from melanoma have uncertainties and are not generalizable. This paper proposes an optimal decision tree (DT)-based approach, including fuzzy-ID3-pValue and Bayes learning algorithms, which overcomes these challenges. When classifying images, DTs employ a multi-stage procedure to partition the feature space, which enhances their ease of use, precision, and speed. Inference engines are used in fuzzy logic to derive logical deductions about knowledge, which facilitates learning DT and Bayesian learning. Taking advantage of the DT dependency structure, we present a novel fuzzy DT for extracting precise and collaborative fuzzy rules. Furthermore, to emphasize the cohesive nature of the laws, a weighted method is employed. Besides, the inference engine system is constructed through deductive and inductive inference engines. The proposed method is verified using the ISIC-2019 dataset as well as the PH2 images, both of which contain dermoscopic images of multiple lesions. The proposed method provides efficient results with 96% and 88% accuracy for ISIC-2019 and PH2 data, respectively.

Original languageEnglish
Pages (from-to)76731-76751
Number of pages21
JournalMultimedia Tools and Applications
Volume83
Issue number31
Early online dateFeb 2024
DOIs
Publication statusPublished - Sept 2024

Keywords

  • Collaborative fuzzy rules
  • ID3-pValue
  • Image processing
  • Melanoma
  • Skin cancer

Fingerprint

Dive into the research topics of 'An efficient computer-aided diagnosis model for classifying melanoma cancer using fuzzy-ID3-pvalue decision tree algorithm'. Together they form a unique fingerprint.

Cite this