An embedded mixed-mode crack in a functionally graded magnetoelectroelastic infinite medium

M. Rekik, S. El-Borgi*, Z. Ounaies

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

This paper focuses on the study of the influence of a mixed-mode crack on the coupled response of a functionally graded magnetoelectroelastic material (FGMEEM). The crack is embedded at the center of a 2D infinite medium subjected to magnetoelectromechanical loads. The material is graded in the direction orthogonal to the crack plane and is modeled as a nonhomogeneous medium with anisotropic constitutive laws. Using Fourier transform, the resulting plane magnetoelectroelasticity equations are converted analytically into singular integral equations which are solved numerically to yield the crack-tip mode I and II stress intensity factors, the electric displacement intensity factors and the magnetic induction intensity factors. The main objective of this paper is to study the influence of material nonhomogeneity on the fields' intensity factors for the purpose of gaining better understanding on the behavior of graded magnetoelectroelastic materials.

Original languageEnglish
Pages (from-to)835-845
Number of pages11
JournalInternational Journal of Solids and Structures
Volume49
Issue number5
DOIs
Publication statusPublished - 1 Mar 2012
Externally publishedYes

Keywords

  • Embedded crack
  • Functionally graded magneto electro elastic material (FGMEEM)
  • Magnetoelectromechanical loads
  • Mixed-mode stress intensity factors
  • Singular integral equations

Fingerprint

Dive into the research topics of 'An embedded mixed-mode crack in a functionally graded magnetoelectroelastic infinite medium'. Together they form a unique fingerprint.

Cite this