TY - JOUR
T1 - Angiogenic Potential of Human Neonatal Foreskin Stromal Cells in the Chick Embryo Chorioallantoic Membrane Model
AU - Vishnubalaji, Radhakrishnan
AU - Atteya, Muhammad
AU - Al-Nbaheen, May
AU - Oreffo, Richard O.C.
AU - Aldahmash, Abdullah
AU - Alajez, Nehad M.
N1 - Publisher Copyright:
Copyright © 2015 Radhakrishnan Vishnubalaji et al.
PY - 2015
Y1 - 2015
N2 - Several studies have demonstrated the multipotentiality of human neonatal foreskin stromal cells (hNSSCs) as being able to differentiate into adipocytes and osteoblasts and potentially other cell types. Recently, we demonstrated that hNSSCs play a role during in vitro angiogenesis and appear to possess a capacity to differentiate into endothelial-like cells; however, their angiogenic potential within an ex vivo environment remains unclear. Current study shows hNSSCs to display significant migration potential in the undifferentiated state and high responsiveness in the in vitro wound healing scratch assay. When hNSSCs were seeded onto the top of the CAM, human von Willebrand factor (hVWF), CD31, smooth muscle actin (SMA), and factor XIIIa positive cells were observed in the chick endothelium. CAMs transplanted with endothelial-differentiated hNSSCs displayed a higher number of blood vessels containing hNSSCs compared to CAMs transplanted with undifferentiated hNSSCs. Interestingly, undifferentiated hNSSCs showed a propensity to differentiate towards ectoderm with indication of epidermal formation with cells positive for CD1a, CK5/6, CK19, FXIIIa, and S-100 cells, which warrant further investigation. Our findings imply a potential angiogenic role for hNSSCs ex vivo in the differentiated and undifferentiated state, with potential contribution to blood vessel formation and potential application in tissue regeneration and vascularization.
AB - Several studies have demonstrated the multipotentiality of human neonatal foreskin stromal cells (hNSSCs) as being able to differentiate into adipocytes and osteoblasts and potentially other cell types. Recently, we demonstrated that hNSSCs play a role during in vitro angiogenesis and appear to possess a capacity to differentiate into endothelial-like cells; however, their angiogenic potential within an ex vivo environment remains unclear. Current study shows hNSSCs to display significant migration potential in the undifferentiated state and high responsiveness in the in vitro wound healing scratch assay. When hNSSCs were seeded onto the top of the CAM, human von Willebrand factor (hVWF), CD31, smooth muscle actin (SMA), and factor XIIIa positive cells were observed in the chick endothelium. CAMs transplanted with endothelial-differentiated hNSSCs displayed a higher number of blood vessels containing hNSSCs compared to CAMs transplanted with undifferentiated hNSSCs. Interestingly, undifferentiated hNSSCs showed a propensity to differentiate towards ectoderm with indication of epidermal formation with cells positive for CD1a, CK5/6, CK19, FXIIIa, and S-100 cells, which warrant further investigation. Our findings imply a potential angiogenic role for hNSSCs ex vivo in the differentiated and undifferentiated state, with potential contribution to blood vessel formation and potential application in tissue regeneration and vascularization.
UR - http://www.scopus.com/inward/record.url?scp=84937020237&partnerID=8YFLogxK
U2 - 10.1155/2015/257019
DO - 10.1155/2015/257019
M3 - Article
AN - SCOPUS:84937020237
SN - 1687-966X
VL - 2015
JO - Stem Cells International
JF - Stem Cells International
M1 - 257019
ER -