ANOMALOUS USER ACCOUNT DETECTION SYSTEMS AND METHODS

Issa M Khalil (Inventor), Ting Yu (Inventor), Eui J Choo (Inventor), Lun-Pin Yuan (Inventor), Sencun Zhu (Inventor)

Research output: Patent

Abstract

Autoencoder-based anomaly detection methods have been used in identifying anomalous users from large-scale enterprise logs with the assumption that adversarial activities do not follow past habitual patterns. Most existing approaches typically build models by reconstructing single-day and individual-user behaviors. However, without capturing long-term signals and group-correlation signals, the models cannot identify low-signal yet long-lasting threats, and will incorrectly report many normal users as anomalies on busy days, which, in turn, leads to a high false positive rate. A method is provided based on compound behavior, which takes into consideration long-term patterns and group behaviors. The provided method leverages a novel behavior representation and an ensemble of deep autoencoders and produces an ordered investigation list.

Original languageEnglish
Patent numberUS2022286472
IPCH04L 9/ 40 A I
Priority date3/03/22
Publication statusPublished - 8 Sept 2022

Fingerprint

Dive into the research topics of 'ANOMALOUS USER ACCOUNT DETECTION SYSTEMS AND METHODS'. Together they form a unique fingerprint.

Cite this