Audio based drone detection and identification using deep learning

Sara Al-Emadi, Abdulla Al-Ali, Amr Mohammad, Abdulaziz Al-Ali

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

115 Citations (Scopus)

Abstract

In recent years, unmanned aerial vehicles (UAVs) have become increasingly accessible to the public due to their high availability with affordable prices while being equipped with better technology. However, this raises a great concern from both the cyber and physical security perspectives since UAVs can be utilized for malicious activities in order to exploit vulnerabilities by spying on private properties, critical areas or to carry dangerous objects such as explosives which makes them a great threat to the society. Drone identification is considered the first step in a multi-procedural process in securing physical infrastructure against this threat. In this paper, we present drone detection and identification methods using deep learning techniques such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Convolutional Recurrent Neural Network (CRNN). These algorithms will be utilized to exploit the unique acoustic fingerprints of the flying drones in order to detect and identify them. We propose a comparison between the performance of different neural networks based on our dataset which features audio recorded samples of drone activities. The major contribution of our work is to validate the usage of these methodologies of drone detection and identification in real life scenarios and to provide a robust comparison of the performance between different deep neural network algorithms for this application. In addition, we are releasing the dataset of drone audio clips for the research community for further analysis.

Original languageEnglish
Title of host publication2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages459-464
Number of pages6
ISBN (Electronic)9781538677476
DOIs
Publication statusPublished - Jun 2019
Externally publishedYes
Event15th IEEE International Wireless Communications and Mobile Computing Conference, IWCMC 2019 - Tangier, Morocco
Duration: 24 Jun 201928 Jun 2019

Publication series

Name2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019

Conference

Conference15th IEEE International Wireless Communications and Mobile Computing Conference, IWCMC 2019
Country/TerritoryMorocco
CityTangier
Period24/06/1928/06/19

Keywords

  • Acoustic fingerprinting
  • Artificial Intelligence
  • Drone
  • Drone Audio Dataset
  • Machine Learning
  • UAVs

Fingerprint

Dive into the research topics of 'Audio based drone detection and identification using deep learning'. Together they form a unique fingerprint.

Cite this