Autonomous Model Predictive Controlled Smart Inverter with Proactive Grid Fault Ride-Through Capability

Mitchell Easley, Sarthak Jain, Mohammad Shadmand*, Haitham Abu-Rub

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

This article presents an autonomous model predictive controlled smart photovoltaic (PV) inverter with proactive grid fault-ride through capability. The proposed smart inverter control features decoupled active and reactive power. It can seamlessly switch between the anticipated modes of operation based on grid condition or grid operator command. The smart inverter autonomously adjusts its active and reactive power set-points according to the grid condition, it operates in maximum power point tracking (MPPT) and low voltage ride through (LVRT) modes in normal grid and faulty grid condition modes, respectively. The proposed novel autonomous model predictive control (AMPC) scheme is leveraged to enhance the operation of the smart inverter. The AMPC includes online weight factor auto-tuning and control objective normalization to eliminate the required trial-and-error weight factor design stage in conventional model predictive control. This feature is particularly beneficial to the dual-mode smart inverter operation. The performance of the proposed grid-tied smart inverter based on the AMPC is verified experimentally. The results demonstrate that the proposed AMPC-based smart inverter features robust grid fault detection, autonomous adjustment of active and reactive power set-points, seamless transition between modes of operation, and elimination of controller tuning effort.

Original languageEnglish
Article number9103950
Pages (from-to)1825-1836
Number of pages12
JournalIEEE Transactions on Energy Conversion
Volume35
Issue number4
DOIs
Publication statusPublished - Dec 2020
Externally publishedYes

Keywords

  • impedance source inverter
  • low voltage ride through
  • Model predictive control
  • smart inverters

Fingerprint

Dive into the research topics of 'Autonomous Model Predictive Controlled Smart Inverter with Proactive Grid Fault Ride-Through Capability'. Together they form a unique fingerprint.

Cite this