Building language models for text with named entities

Md Rizwan Parvez, Baishakhi Ray, Saikat Chakraborty, Kai Wei Chang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Citations (Scopus)

Abstract

Text in many domains involves a significant amount of named entities. Predicting the entity names is often challenging for a language model as they appear less frequent on the training corpus. In this paper, we propose a novel and effective approach to building a discriminative language model which can learn the entity names by leveraging their entity type information. We also introduce two benchmark datasets based on recipes and Java programming codes, on which we evaluate the proposed model. Experimental results show that our model achieves 52.2% better perplexity in recipe generation and 22.06% on code generation than the state-of-the-art language models.

Original languageEnglish
Title of host publicationACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
PublisherAssociation for Computational Linguistics (ACL)
Pages2373-2383
Number of pages11
ISBN (Electronic)9781948087322
DOIs
Publication statusPublished - 2018
Externally publishedYes
Event56th Annual Meeting of the Association for Computational Linguistics, ACL 2018 - Melbourne, Australia
Duration: 15 Jul 201820 Jul 2018

Publication series

NameACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
Volume1

Conference

Conference56th Annual Meeting of the Association for Computational Linguistics, ACL 2018
Country/TerritoryAustralia
CityMelbourne
Period15/07/1820/07/18

Fingerprint

Dive into the research topics of 'Building language models for text with named entities'. Together they form a unique fingerprint.

Cite this