Can GPT-4 Identify Propaganda? Annotation and Detection of Propaganda Spans in News Articles

Maram Hasanain, Fatema Ahmed, Firoj Alam

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Citations (Scopus)

Abstract

The use of propaganda has spiked on mainstream and social media, aiming to manipulate or mislead users. While efforts to automatically detect propaganda techniques in textual, visual, or multimodal content have increased, most of them primarily focus on English content. The majority of the recent initiatives targeting medium to low-resource languages produced relatively small annotated datasets, with a skewed distribution, posing challenges for the development of sophisticated propaganda detection models. To address this challenge, we carefully develop the largest propaganda dataset to date, ArPro, comprised of 8K paragraphs from newspaper articles, labeled at the text span level following a taxonomy of 23 propagandistic techniques. Furthermore, our work offers the first attempt to understand the performance of large language models (LLMs), using GPT-4, for fine-grained propaganda detection from text. Results showed that GPT-4's performance degrades as the task moves from simply classifying a paragraph as propagandistic or not, to the fine-grained task of detecting propaganda techniques and their manifestation in text. Compared to models fine-tuned on the dataset for propaganda detection at different classification granularities, GPT-4 is still far behind. Finally, we evaluate GPT-4 on a dataset consisting of six other languages for span detection, and results suggest that the model struggles with the task across languages. We made the dataset publicly available for the community.

Original languageEnglish
Title of host publication2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
EditorsNicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
PublisherEuropean Language Resources Association (ELRA)
Pages2724-2744
Number of pages21
ISBN (Electronic)9782493814104
Publication statusPublished - May 2024
EventJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 - Hybrid, Torino, Italy
Duration: 20 May 202425 May 2024

Publication series

Name2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings

Conference

ConferenceJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
Country/TerritoryItaly
CityHybrid, Torino
Period20/05/2425/05/24

Keywords

  • LLMs
  • Propaganda
  • Span detection
  • Zero-shot learning

Fingerprint

Dive into the research topics of 'Can GPT-4 Identify Propaganda? Annotation and Detection of Propaganda Spans in News Articles'. Together they form a unique fingerprint.

Cite this