Capacitive humidity sensing using carbon nanotube enabled capillary condensation

John T.W. Yeow, James P.M. She

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Citations (Scopus)

Abstract

This electronic document is a "live" A capacitive humidity sensor, fabricated by depositing multi-wall carbon nanotubes (MWCNTs) on one of the stainless steel substrates, is presented for moisture detection at room temperature. When compared to a sensor without CNTs, CNT-enhanced sensor has a capacitance response of 60-200% more when the humidity is under 70% relative humidity (RH), and 300%-3000% more if RH level goes over 70%. The detection and recovery response times are on the order of seconds. The performance is comparable to a commercial sensor from Honeywell that is used as a benchmark throughout the experiments. Our results demonstrate that nano-materials like MWCNTs, can naturally form porous nano-structures, which can potentially realize a miniature capacitive humidity sensor with a higher sensing resolution. The gain in performance is attributed to capillary condensation effect. The capillary condensation effect, that is facilitated by the porous nanostructures of random aligned MWCNTs, is discussed in this paper template. The various components of your paper [title, text, heads, etc.] are already defined on the style sheet, as illustrated by the portions given in this document.

Original languageEnglish
Title of host publication2006 5th IEEE Conference on Sensors
Pages439-443
Number of pages5
DOIs
Publication statusPublished - 2006
Externally publishedYes
Event2006 5th IEEE Conference on Sensors - Daegu, Korea, Republic of
Duration: 22 Oct 200625 Oct 2006

Publication series

NameProceedings of IEEE Sensors

Conference

Conference2006 5th IEEE Conference on Sensors
Country/TerritoryKorea, Republic of
CityDaegu
Period22/10/0625/10/06

Fingerprint

Dive into the research topics of 'Capacitive humidity sensing using carbon nanotube enabled capillary condensation'. Together they form a unique fingerprint.

Cite this