TY - GEN
T1 - Characterization of time-averaged turbulence statistics for shear thinning fluid in horizontal concentric annulus using rans based CFD simulation
AU - Xiong, Xiao
AU - Rahman, Mohammad Azizur
AU - Zhang, Yan
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - A RANS based shear stress transportation (SST) model was employed in this study to validate experimental results from a recent literature, which investigated the fully developed turbulent flow for a non-Newtonian shear thinning fluid, containing drag reduction polymer additives in a horizontal concentric annulus (inner to outer radio θ=0.4). The polymer concentration varied from 0.07% V/V to 0.12% V/V and three mass flow rates from 3.92 kg/s to 5.95 kg/s were analyzed. The viscous property of the fluid was modeled by the power-law model. Simulation performed with the commercial code of ANSYS-CFX indicated that the SST model with default model constants overestimated the turbulence statistics of shear thinning flow in the near wall region where y+<60. As an effort to improve simulation accuracy, one of the model constants α1 was tuned in this study for the first time. Simulation results obtained from the modified model showed better agreement with experimental data compared to those from the default one. The present study represents a successful benchmark task for simulating turbulent shear thinning flow in concentric annuli with modified turbulence model constants.
AB - A RANS based shear stress transportation (SST) model was employed in this study to validate experimental results from a recent literature, which investigated the fully developed turbulent flow for a non-Newtonian shear thinning fluid, containing drag reduction polymer additives in a horizontal concentric annulus (inner to outer radio θ=0.4). The polymer concentration varied from 0.07% V/V to 0.12% V/V and three mass flow rates from 3.92 kg/s to 5.95 kg/s were analyzed. The viscous property of the fluid was modeled by the power-law model. Simulation performed with the commercial code of ANSYS-CFX indicated that the SST model with default model constants overestimated the turbulence statistics of shear thinning flow in the near wall region where y+<60. As an effort to improve simulation accuracy, one of the model constants α1 was tuned in this study for the first time. Simulation results obtained from the modified model showed better agreement with experimental data compared to those from the default one. The present study represents a successful benchmark task for simulating turbulent shear thinning flow in concentric annuli with modified turbulence model constants.
UR - http://www.scopus.com/inward/record.url?scp=84996523904&partnerID=8YFLogxK
U2 - 10.1115/OMAE2016-54379
DO - 10.1115/OMAE2016-54379
M3 - Conference contribution
AN - SCOPUS:84996523904
T3 - Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
BT - Polar and Arctic Sciences and Technology; Petroleum Technology
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2016
Y2 - 19 June 2016 through 24 June 2016
ER -