TY - GEN
T1 - ChartInstruct
T2 - Findings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
AU - Masry, Ahmed
AU - Shahmohammadi, Mehrad
AU - Parvez, Md Rizwan
AU - Hoque, Enamul
AU - Joty, Shafiq
N1 - Publisher Copyright:
© 2024 Association for Computational Linguistics.
PY - 2024
Y1 - 2024
N2 - Charts provide visual representations of data and are widely used for analyzing information, addressing queries, and conveying insights to others. Various chart-related downstream tasks have emerged recently, such as question-answering and summarization. A common strategy to solve these tasks is to fine-tune various models originally trained on vision tasks language. However, such task-specific models are not capable of solving a wide range of chart-related tasks, constraining their real-world applicability. To overcome these challenges, we introduce ChartInstruct: a novel chart-specific vision-language Instruction-following dataset comprising 191K instructions generated with 71K charts. We then present two distinct systems for instruction tuning on such datasets: (1) an end-to-end model that connects a vision encoder for chart understanding with a LLM; and (2) a pipeline model that employs a two-step approach to extract chart data tables and input them into the LLM. In experiments on four downstream tasks, we first show the effectiveness of our model-achieving a new set of state-of-the-art results. Further evaluation shows that our instruction-tuning approach supports a wide array of real-world chart comprehension and reasoning scenarios, thereby expanding the scope and applicability of our models to new kinds of tasks.
AB - Charts provide visual representations of data and are widely used for analyzing information, addressing queries, and conveying insights to others. Various chart-related downstream tasks have emerged recently, such as question-answering and summarization. A common strategy to solve these tasks is to fine-tune various models originally trained on vision tasks language. However, such task-specific models are not capable of solving a wide range of chart-related tasks, constraining their real-world applicability. To overcome these challenges, we introduce ChartInstruct: a novel chart-specific vision-language Instruction-following dataset comprising 191K instructions generated with 71K charts. We then present two distinct systems for instruction tuning on such datasets: (1) an end-to-end model that connects a vision encoder for chart understanding with a LLM; and (2) a pipeline model that employs a two-step approach to extract chart data tables and input them into the LLM. In experiments on four downstream tasks, we first show the effectiveness of our model-achieving a new set of state-of-the-art results. Further evaluation shows that our instruction-tuning approach supports a wide array of real-world chart comprehension and reasoning scenarios, thereby expanding the scope and applicability of our models to new kinds of tasks.
UR - http://www.scopus.com/inward/record.url?scp=85205324997&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85205324997
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 10387
EP - 10409
BT - 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Proceedings of the Conference
A2 - Ku, Lun-Wei
A2 - Martins, Andre
A2 - Srikumar, Vivek
PB - Association for Computational Linguistics (ACL)
Y2 - 11 August 2024 through 16 August 2024
ER -