CLIMBER: Pivot-Based Approximate Similarity Search over Big Data Series

Liang Zhang, Mohamed Y. Eltabakh, Elke A. Rundensteiner, Khalid Alnuaim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The terabyte-scale of data series has motivated recent efforts to design fully distributed techniques for supporting operations such as approximate kNN similarity search, which is a building block operation in most analytics services on data series. Unfortunately, these techniques are heavily geared towards achieving scalability at the cost of sacrificing the results' accuracy. State-of-the-art systems DPiSAX and TARDIS report accuracy below 10% and 40%, respectively, which is not practical for many real-world applications. In this paper, we investigate the root problems in these existing techniques that limit their ability to achieve better a trade-off between scalability and accuracy. Then, we propose a framework, called CLIMBER, that encompasses a novel feature extraction mechanism, indexing scheme, and query processing algorithms for supporting approximate similarity search in big data series. For CLIMBER, we propose a new loss-resistant dual representation composed of rank-sensitive and ranking-insensitive signatures capturing data series objects. Based on this representation, we devise a distributed two-level index structure supported by an efficient data partitioning scheme. Our similarity metrics tailored for this dual representation enables meaningful comparison and distance evaluation between the rank-sensitive and ranking-insensitive signatures. Finally, we propose two efficient query processing algorithms, CLIMBER-kNN and CLIMBER-kNN-Adaptive, for answering approximate kNN similarity queries. Our experimental study on real-world and benchmark datasets demonstrates that CLIMBER, unlike existing techniques, features results' accuracy above 80% while retaining the desired scalability to terabytes of data.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE 40th International Conference on Data Engineering, ICDE 2024
PublisherIEEE Computer Society
Pages3933-3946
Number of pages14
ISBN (Electronic)9798350317152
DOIs
Publication statusPublished - 16 May 2024
Event40th IEEE International Conference on Data Engineering, ICDE 2024 - Utrecht, Netherlands
Duration: 13 May 202417 May 2024

Publication series

NameProceedings - International Conference on Data Engineering
ISSN (Print)1084-4627
ISSN (Electronic)2375-0286

Conference

Conference40th IEEE International Conference on Data Engineering, ICDE 2024
Country/TerritoryNetherlands
CityUtrecht
Period13/05/2417/05/24

Keywords

  • data series
  • distributed processing
  • indexing framework
  • similarity search

Fingerprint

Dive into the research topics of 'CLIMBER: Pivot-Based Approximate Similarity Search over Big Data Series'. Together they form a unique fingerprint.

Cite this