TY - JOUR
T1 - Collagen and elastin cross-linking
T2 - A mechanism of constrictive remodeling after arterial injury
AU - Brasselet, Camille
AU - Durand, Eric
AU - Addad, Faouzi
AU - Al Haj Zen, Ayman
AU - Smeets, Mirjam B.
AU - Laurent-Maquin, Dominique
AU - Bouthors, Sylvie
AU - Bellon, Georges
AU - De Kleijn, Dominique
AU - Godeau, Gaston
AU - Garnotel, Roselyne
AU - Gogly, Bruno
AU - Lafont, Antoine
PY - 2005/11
Y1 - 2005/11
N2 - Constrictive remodeling after arterial injury is related to collagen accumulation. Cross-linking has been shown to induce a scar process in cutaneous wound healing and is increased after arterial injury. We therefore evaluated the effect of cross-linking inhibition on qualitative and quantitative changes in collagen, elastin, and arterial remodeling after balloon injury in the atherosclerotic rabbit model. Atherosclerotic-like lesions were induced in femoral arteries of 28 New Zealand White rabbits by a combination of air desiccation and a high-cholesterol diet. After 1 mo, balloon angioplasty was performed in both femoral arteries. Fourteen rabbits were fed β-aminopropionitrile (β-APN, 100 mg/kg) and compared with 14 untreated animals. The remodeling index, i.e., the ratio of external elastic lamina at the lesion site to external elastic lamina at the reference site, was determined 4 wk after angioplasty for both groups. Pyridinoline was significantly decreased in arteries from β-APN-treated animals compared with controls, confirming inhibition of collagen cross-linking: 0.30 (SD 0.03) and 0.52 (SD 0.02) mmol/mol hydroxyproline, respectively (P = 0.002). Scanning and transmission electron microscopy showed a profound disorganization of collagen fibers in arteries from β-APN-treated animals. The remodeling index was significantly higher in β-APN-treated than in control animals [1.1 (SD 0.3) vs. 0.8 (SD 0.3), P = 0.03], indicating favorable remodeling. Restenosis decreased by 33% in β-APN-treated animals: 32% (SD 16) vs. 48% (SD 24) (P = 0.02). Neointimal collagen density was significantly lower in β-APN-treated animals than in controls: 23.0% (SD 3.8) vs. 29.4% (SD 4.0) (P = 0.004). These findings suggest that collagen and elastin cross-linking plays a role in the healing process via constrictive remodeling and restenosis after balloon injury in the atherosclerotic rabbit model.
AB - Constrictive remodeling after arterial injury is related to collagen accumulation. Cross-linking has been shown to induce a scar process in cutaneous wound healing and is increased after arterial injury. We therefore evaluated the effect of cross-linking inhibition on qualitative and quantitative changes in collagen, elastin, and arterial remodeling after balloon injury in the atherosclerotic rabbit model. Atherosclerotic-like lesions were induced in femoral arteries of 28 New Zealand White rabbits by a combination of air desiccation and a high-cholesterol diet. After 1 mo, balloon angioplasty was performed in both femoral arteries. Fourteen rabbits were fed β-aminopropionitrile (β-APN, 100 mg/kg) and compared with 14 untreated animals. The remodeling index, i.e., the ratio of external elastic lamina at the lesion site to external elastic lamina at the reference site, was determined 4 wk after angioplasty for both groups. Pyridinoline was significantly decreased in arteries from β-APN-treated animals compared with controls, confirming inhibition of collagen cross-linking: 0.30 (SD 0.03) and 0.52 (SD 0.02) mmol/mol hydroxyproline, respectively (P = 0.002). Scanning and transmission electron microscopy showed a profound disorganization of collagen fibers in arteries from β-APN-treated animals. The remodeling index was significantly higher in β-APN-treated than in control animals [1.1 (SD 0.3) vs. 0.8 (SD 0.3), P = 0.03], indicating favorable remodeling. Restenosis decreased by 33% in β-APN-treated animals: 32% (SD 16) vs. 48% (SD 24) (P = 0.02). Neointimal collagen density was significantly lower in β-APN-treated animals than in controls: 23.0% (SD 3.8) vs. 29.4% (SD 4.0) (P = 0.004). These findings suggest that collagen and elastin cross-linking plays a role in the healing process via constrictive remodeling and restenosis after balloon injury in the atherosclerotic rabbit model.
KW - Angioplasty
KW - β-aminopropionitrile
UR - http://www.scopus.com/inward/record.url?scp=27144463969&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00410.2005
DO - 10.1152/ajpheart.00410.2005
M3 - Article
C2 - 15951346
AN - SCOPUS:27144463969
SN - 0363-6135
VL - 289
SP - H2228-H2233
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 5 58-5
ER -