TY - JOUR
T1 - Comparison of Crushed-Zone Skin Factor for Cased and Perforated Wells Calculated with and without including a Tip-Crushed Zone Effect
AU - Abobaker, Ekhwaiter
AU - Elsanoose, Abadelhalim
AU - Khan, Faisal
AU - Rahman, Mohammad Azizur
AU - Aborig, Amer
AU - Butt, Stephen
N1 - Publisher Copyright:
© 2021 Ekhwaiter Abobaker et al.
PY - 2021
Y1 - 2021
N2 - A number of different factors can affect flow performance in perforated completions, such as perforation density, perforation damage, and tunnel geometry. In perforation damage, any compaction at the perforation tunnels will lead to reduced permeability, more significant pressure drop, and lower productivity of the reservoir. The reduced permeability of the crushed zone around the perforation can be formulated as a crushed-zone skin factor. For reservoir flow, earlier research studies show how crushed (compacted) zones cause heightened resistance in radially converging vertical and horizontal flow entering perforations. However, the effects related to crushed zones on the total skin factor are still a moot point, especially for horizontal flows in perforations. Therefore, the present study will look into the varied effects occurring in the crushed zone in relation to the vertical and horizontal flows. The experimental test was carried out using a geotechnical radial flow set-up to measure the differential pressure in the perforation tunnel with a crushed zone. Computational fluid dynamics (CFD) software was used for simulating pressure gradient in a cylindrical perforation tunnel. The single-phase water was radially injected into the core sample with the same flow boundary conditions in the experimental and numerical procedures. In this work, two crushed zone configuration scenarios were applied in conjunction with different perforation parameters, perforation length, crushed zone radius, and crushed zone permeability. In the initial scenario, the crushed zone is assumed to be located at the perforation tunnel's side only, while in the second scenario, the crushed zone is assumed to be located at a side and the tip of perforation (a tip-crushed zone). The simulated results indicate a good comparison with regard to the two scenarios' pressure gradients. Furthermore, the simulations' comparison reveals another pressure drop caused by the tip crushed zone related to the horizontal or plane flow in the perforations. The differences between the two simulations' results show that currently available models for estimating the skin factor for vertical perforated completions need to be improved based on which of the two cases is closer to reality. This study has presented a better understanding of crushed zone characteristics by employing a different approach to the composition and shape of the crushed zone and permeability reduction levels for the crushed zone in the axial direction of the perforation.
AB - A number of different factors can affect flow performance in perforated completions, such as perforation density, perforation damage, and tunnel geometry. In perforation damage, any compaction at the perforation tunnels will lead to reduced permeability, more significant pressure drop, and lower productivity of the reservoir. The reduced permeability of the crushed zone around the perforation can be formulated as a crushed-zone skin factor. For reservoir flow, earlier research studies show how crushed (compacted) zones cause heightened resistance in radially converging vertical and horizontal flow entering perforations. However, the effects related to crushed zones on the total skin factor are still a moot point, especially for horizontal flows in perforations. Therefore, the present study will look into the varied effects occurring in the crushed zone in relation to the vertical and horizontal flows. The experimental test was carried out using a geotechnical radial flow set-up to measure the differential pressure in the perforation tunnel with a crushed zone. Computational fluid dynamics (CFD) software was used for simulating pressure gradient in a cylindrical perforation tunnel. The single-phase water was radially injected into the core sample with the same flow boundary conditions in the experimental and numerical procedures. In this work, two crushed zone configuration scenarios were applied in conjunction with different perforation parameters, perforation length, crushed zone radius, and crushed zone permeability. In the initial scenario, the crushed zone is assumed to be located at the perforation tunnel's side only, while in the second scenario, the crushed zone is assumed to be located at a side and the tip of perforation (a tip-crushed zone). The simulated results indicate a good comparison with regard to the two scenarios' pressure gradients. Furthermore, the simulations' comparison reveals another pressure drop caused by the tip crushed zone related to the horizontal or plane flow in the perforations. The differences between the two simulations' results show that currently available models for estimating the skin factor for vertical perforated completions need to be improved based on which of the two cases is closer to reality. This study has presented a better understanding of crushed zone characteristics by employing a different approach to the composition and shape of the crushed zone and permeability reduction levels for the crushed zone in the axial direction of the perforation.
UR - http://www.scopus.com/inward/record.url?scp=85111959757&partnerID=8YFLogxK
U2 - 10.1155/2021/3689964
DO - 10.1155/2021/3689964
M3 - Article
AN - SCOPUS:85111959757
SN - 1468-8115
VL - 2021
JO - Geofluids
JF - Geofluids
M1 - 3689964
ER -