Computational Efficiency Maximization for UAV-Assisted MEC Networks with Energy Harvesting in Disaster Scenarios

Reda Khalid, Zaiba Shah, Muhammad Naeem, Amjad Ali, Ala Al-Fuqaha*, Waleed Ejaz

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    3 Citations (Scopus)

    Abstract

    Recently, unmanned aerial vehicle (UAV)-assisted mobile-edge computing (MEC) networks are considered to provide effective and efficient solutions for disaster management. However, the limited size of end-user devices comes with the limitation of battery lives and computational capacities. Therefore, offloading, energy consumption, and computational efficiency are significant challenges for uninterrupted communication in UAV-assisted MEC networks. This article considers a UAV-assisted MEC network with energy harvesting (EH). To achieve this, we mathematically formulate a mixed-integer nonlinear programming problem to maximize the computational efficiency of UAV-assisted MEC networks with EH under disaster situations. A power-splitting architecture splits the source power for communication and EH. We jointly optimize user association, transmission power of user equipment (UE), task offloading time, and UAV's optimal location. To solve this optimization problem, we divide it into three stages. In the first stage, we adopt k -means clustering to determine the optimal locations of the UAVs. In the second stage, we determine user association. In the third stage, we determine the optimal power of UE and offloading time using the optimal UAV location from the first stage and the user association indicator from the second stage, followed by linearization and the use of the interior-point method to solve the resulting linear optimization problem. Simulation results for offloading, no-offloading, offloading-EH, and no-offloading-EH scenarios are presented with a varying number of UAVs and UEs. The results show the proposed EH solution's effectiveness in offloading scenarios compared to no-offloading scenarios in terms of computational efficiency, bits computed, and energy consumption.

    Original languageEnglish
    Pages (from-to)9004-9018
    Number of pages15
    JournalIEEE Internet of Things Journal
    Volume11
    Issue number5
    DOIs
    Publication statusPublished - 1 Mar 2024

    Keywords

    • Autonomous aerial vehicles
    • Computational efficiency
    • Disaster management
    • Energy consumption
    • Energy harvesting
    • Interior-point
    • Internet of Things
    • Linearization
    • Optimization
    • Resource management
    • Task analysis
    • energy harvesting (EH)
    • unmanned aerial vehicles (UAVs)

    Fingerprint

    Dive into the research topics of 'Computational Efficiency Maximization for UAV-Assisted MEC Networks with Energy Harvesting in Disaster Scenarios'. Together they form a unique fingerprint.

    Cite this