TY - GEN
T1 - Coupled heat and mass transfer CFD model for methane hydrate
AU - Neto, Eugenio Turco
AU - Rahman, M. A.
AU - Imtiaz, Syed
AU - Dos Santos Pereira, Thiago
AU - De Sousa, Fernanda Soares
N1 - Publisher Copyright:
© 2015 by ASME.
PY - 2015
Y1 - 2015
N2 - The gas hydrates problem has been growing in offshore deep water condition where due to low temperature and high pressure hydrate formation becomes more favorable. Several studies have been done to predict the influence of gas hydrate formation in natural gas flow pipeline. However, the effects of multiphase hydrodynamic properties on hydrate formation are missing in these studies. The use of CFD to simulate gas hydrate formation can overcome this gap. In this study a computational fluid dynamics (CFD) model has been developed for mass, heat and momentum transfer for better understanding natural gas hydrate formation and its migration into the pipelines using ANSYS CFX-14. The problem considered in this study is a three-dimensional multiphase-flow model based on Simon Lo (2003) study, which considered the oil-dominant flow in a pipeline with hydrate formation around water droplets dispersed into the oil phase. The results obtained in this study will be useful in designing a multiphase flow metering and a pump to overcome the pressure drop caused by hydrate formation in multiphase petroleum production.
AB - The gas hydrates problem has been growing in offshore deep water condition where due to low temperature and high pressure hydrate formation becomes more favorable. Several studies have been done to predict the influence of gas hydrate formation in natural gas flow pipeline. However, the effects of multiphase hydrodynamic properties on hydrate formation are missing in these studies. The use of CFD to simulate gas hydrate formation can overcome this gap. In this study a computational fluid dynamics (CFD) model has been developed for mass, heat and momentum transfer for better understanding natural gas hydrate formation and its migration into the pipelines using ANSYS CFX-14. The problem considered in this study is a three-dimensional multiphase-flow model based on Simon Lo (2003) study, which considered the oil-dominant flow in a pipeline with hydrate formation around water droplets dispersed into the oil phase. The results obtained in this study will be useful in designing a multiphase flow metering and a pump to overcome the pressure drop caused by hydrate formation in multiphase petroleum production.
UR - http://www.scopus.com/inward/record.url?scp=84947712505&partnerID=8YFLogxK
U2 - 10.1115/OMAE201542258
DO - 10.1115/OMAE201542258
M3 - Conference contribution
AN - SCOPUS:84947712505
T3 - Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
BT - Petroleum Technology
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2015
Y2 - 31 May 2015 through 5 June 2015
ER -