DAICT: A dialectal arabic irony corpus extracted from twitter

Ines Abbes, Wajdi Zaghouani, Omaima El-Hardlo, Faten Ashour

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

36 Citations (Scopus)

Abstract

Identifying irony in user-generated social media content has a wide range of applications; however to date Arabic content has received limited attention. To bridge this gap, this study builds a new open domain Arabic corpus annotated for irony detection. We query Twitter using irony-related hashtags to collect ironic messages, which are then manually annotated by two linguists according to our working definition of irony. Challenges which we have encountered during the annotation process reflect the inherent limitations of Twitter messages interpretation, as well as the complexity of Arabic and its dialects. Once published, our corpus will be a valuable free resource for developing open domain systems for automatic irony recognition in Arabic language and its dialects in social media text.

Original languageEnglish
Title of host publicationLREC 2020 - 12th International Conference on Language Resources and Evaluation, Conference Proceedings
EditorsNicoletta Calzolari, Frederic Bechet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
PublisherEuropean Language Resources Association (ELRA)
Pages6265-6271
Number of pages7
ISBN (Electronic)9791095546344
Publication statusPublished - 2020
Event12th International Conference on Language Resources and Evaluation, LREC 2020 - Marseille, France
Duration: 11 May 202016 May 2020

Publication series

NameLREC 2020 - 12th International Conference on Language Resources and Evaluation, Conference Proceedings

Conference

Conference12th International Conference on Language Resources and Evaluation, LREC 2020
Country/TerritoryFrance
CityMarseille
Period11/05/2016/05/20

Keywords

  • Arabic Dialects
  • Corpus Generation
  • Irony
  • Twitter

Fingerprint

Dive into the research topics of 'DAICT: A dialectal arabic irony corpus extracted from twitter'. Together they form a unique fingerprint.

Cite this