TY - JOUR
T1 - Denjoy–Carleman Microlocal Regularity on Smooth Real Submanifolds of Complex Spaces
AU - Braun Rodrigues, Nicholas
AU - da Silva, Antonio Victor
N1 - Publisher Copyright:
© The Author(s) 2025.
PY - 2025/2
Y1 - 2025/2
N2 - We prove the existence of approximate solutions in the regular Denjoy-Carleman sense for some systems of smooth pairwise commuting complex vector fields. Such approximate solutions provide a well-defined notion of Denjoy-Carleman wave front set of distributions on C infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}<^>\infty $$\end{document}-smooth maximally real submanifolds in complex space which can be characterized in terms of the decay of a Fourier-Bros-Iagolnitzer transform. We also apply the approximate solutions to analyze the Denjoy-Carleman microlocal regularity of solutions of certain systems of first-order nonlinear partial differential equations.
AB - We prove the existence of approximate solutions in the regular Denjoy-Carleman sense for some systems of smooth pairwise commuting complex vector fields. Such approximate solutions provide a well-defined notion of Denjoy-Carleman wave front set of distributions on C infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}<^>\infty $$\end{document}-smooth maximally real submanifolds in complex space which can be characterized in terms of the decay of a Fourier-Bros-Iagolnitzer transform. We also apply the approximate solutions to analyze the Denjoy-Carleman microlocal regularity of solutions of certain systems of first-order nonlinear partial differential equations.
KW - Denjoy-Carleman classes
KW - FBI transform
KW - Maximally real submanifolds
KW - Quasianalytic classes
UR - http://www.scopus.com/inward/record.url?scp=85219661665&partnerID=8YFLogxK
U2 - 10.1007/s00041-025-10144-z
DO - 10.1007/s00041-025-10144-z
M3 - Article
AN - SCOPUS:85219661665
SN - 1069-5869
VL - 31
JO - Journal of Fourier Analysis and Applications
JF - Journal of Fourier Analysis and Applications
IS - 1
M1 - 14
ER -