Dense Optical Flow Estimation Using Sparse Regularizers from Reduced Measurements

Muhammad Wasim Nawaz, Abdesselam Bouzerdoum, Muhammad Mahboob Ur Rahman, Ghulam Abbas, Faizan Rashid*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Optical flow is the pattern of apparent motion of objects in a scene. The computation of optical flow is a critical component in numerous computer vision tasks such as object detection, visual object tracking, and activity recognition. Despite a lot of research, efficiently managing abrupt changes in motion remains a challenge in motion estimation. This paper proposes novel variational regularization methods to address this problem since they allow combining different mathematical concepts into a joint energy minimization framework. In this work, we incorporate concepts from signal sparsity into variational regularization for motion estimation. The proposed regularization uses robust ℓ1 norm, which promotes sparsity and handles motion discontinuities. By using this regularization, we promote the sparsity of the optical flow gradient. This sparsity helps recover a signal even with just a few measurements. We explore recovering optical flow from a limited set of linear measurements using this regularizer. Our findings show that leveraging the sparsity of the derivatives of optical flow reduces computational complexity and memory needs.

Original languageEnglish
Pages (from-to)48485-48496
Number of pages12
JournalIEEE Access
Volume12
DOIs
Publication statusPublished - 2 Apr 2024

Keywords

  • Energy minimization
  • motion discontinuities
  • optical flow
  • sparse regularizers
  • total variation

Fingerprint

Dive into the research topics of 'Dense Optical Flow Estimation Using Sparse Regularizers from Reduced Measurements'. Together they form a unique fingerprint.

Cite this