TY - GEN
T1 - Differentially-private next-location prediction with neural networks
AU - Ahuja, Ritesh
AU - Ghinita, Gabriel
AU - Shahabi, Cyrus
N1 - Publisher Copyright:
© 2020 Copyright held by the owner/author(s).
PY - 2020
Y1 - 2020
N2 - The emergence of mobile apps (e.g., location-based services, geo-social networks, ride-sharing) led to the collection of vast amounts of trajectory data that greatly benefit the understanding of individual mobility. One problem of particular interest is next-location prediction, which facilitates location-based advertising, point-of-interest recommendation, traffic optimization, etc. However, using individual trajectories to build prediction models introduces serious privacy concerns, since exact whereabouts of users can disclose sensitive information such as their health status or lifestyle choices. Several research efforts focused on privacy-preserving next-location prediction, but they have serious limitations: some use outdated privacy models (e.g., k-anonymity), while others employ learning models with limited expressivity (e.g., matrix factorization). More recent approaches (e.g., DP-SGD) integrate the powerful differential privacy model with neural networks, but they provide only generic and difficult-to-tune methods that do not perform well on location data, which is inherently skewed and sparse. We propose a technique that builds upon DP-SGD, but adapts it for the requirements of next-location prediction. We focus on user-level privacy, a strong privacy guarantee that protects users regardless of how much data they contribute. Central to our approach is the use of the skip-gram model, and its negative sampling technique. Our work is the first to propose differentially-private learning with skip-grams. In addition, we devise data grouping techniques within the skip-gram framework that pool together trajectories from multiple users in order to accelerate learning and improve model accuracy. Experiments conducted on real datasets demonstrate that our approach significantly boosts prediction accuracy compared to existing DP-SGD techniques.
AB - The emergence of mobile apps (e.g., location-based services, geo-social networks, ride-sharing) led to the collection of vast amounts of trajectory data that greatly benefit the understanding of individual mobility. One problem of particular interest is next-location prediction, which facilitates location-based advertising, point-of-interest recommendation, traffic optimization, etc. However, using individual trajectories to build prediction models introduces serious privacy concerns, since exact whereabouts of users can disclose sensitive information such as their health status or lifestyle choices. Several research efforts focused on privacy-preserving next-location prediction, but they have serious limitations: some use outdated privacy models (e.g., k-anonymity), while others employ learning models with limited expressivity (e.g., matrix factorization). More recent approaches (e.g., DP-SGD) integrate the powerful differential privacy model with neural networks, but they provide only generic and difficult-to-tune methods that do not perform well on location data, which is inherently skewed and sparse. We propose a technique that builds upon DP-SGD, but adapts it for the requirements of next-location prediction. We focus on user-level privacy, a strong privacy guarantee that protects users regardless of how much data they contribute. Central to our approach is the use of the skip-gram model, and its negative sampling technique. Our work is the first to propose differentially-private learning with skip-grams. In addition, we devise data grouping techniques within the skip-gram framework that pool together trajectories from multiple users in order to accelerate learning and improve model accuracy. Experiments conducted on real datasets demonstrate that our approach significantly boosts prediction accuracy compared to existing DP-SGD techniques.
UR - http://www.scopus.com/inward/record.url?scp=85084174359&partnerID=8YFLogxK
U2 - 10.5441/002/edbt.2020.12
DO - 10.5441/002/edbt.2020.12
M3 - Conference contribution
AN - SCOPUS:85084174359
T3 - Advances in Database Technology - EDBT
SP - 121
EP - 132
BT - Advances in Database Technology - EDBT 2020
A2 - Bonifati, Angela
A2 - Zhou, Yongluan
A2 - Vaz Salles, Marcos Antonio
A2 - Bohm, Alexander
A2 - Olteanu, Dan
A2 - Fletcher, George
A2 - Khan, Arijit
A2 - Yang, Bin
PB - OpenProceedings.org
T2 - 23rd International Conference on Extending Database Technology, EDBT 2020
Y2 - 30 March 2020 through 2 April 2020
ER -