Discriminant analysis of industrial gases for electronic nose applications

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

This work is a part of ongoing research project for optimization of the Electronic Nose System (ENS) for its applications related to the identification of industrial gases. Two different experimental datasets of several gases are collected in a laboratory setup using two different sensor arrays. A dataset of six different gases (C3H8, Cl2, CO, CO2, SO2 and NO2 is collected using a commercially available array of seven Figaro gas sensors. Another dataset of three gases (C2H6O, CH4 and CO) is collected using a 4 × 4 tin-oxide sensors array which is built in the In-house foundry. In this paper some of the existing state of the art classification models are tested for the classification of experimentally acquired datasets. The existing classification models are used to analyze the behavior of the data acquired. The models that are tested for identification of gases are Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Regularized Discriminant Analysis (RDA), and K-Nearest Neighbor (KNN). Besides testing these classification models, fuzzy C means (FCM) clustering is also tested for the separation of clusters of gases.

Original languageEnglish
Title of host publicationCIVEMSA 2018 - 2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781538646182
DOIs
Publication statusPublished - 17 Aug 2018
Event23rd Annual IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, CIVEMSA 2018 - Ottawa, Canada
Duration: 12 Jun 201813 Jun 2018

Publication series

NameCIVEMSA 2018 - 2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, Proceedings

Conference

Conference23rd Annual IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, CIVEMSA 2018
Country/TerritoryCanada
CityOttawa
Period12/06/1813/06/18

Keywords

  • Cluster analysis
  • Electronic nose system
  • Industrial gases
  • Supervised learning

Fingerprint

Dive into the research topics of 'Discriminant analysis of industrial gases for electronic nose applications'. Together they form a unique fingerprint.

Cite this