TY - JOUR
T1 - Distributed Artificial Intelligence Application in Agri-food Supply Chains 4.0
AU - Sharifmousavi, Mahdi
AU - Kayvanfar, Vahid
AU - Baldacci, Roberto
N1 - Publisher Copyright:
© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
PY - 2024
Y1 - 2024
N2 - Supply Chain 4.0 is characterized by various factors, including seamless integration and connectivity, the Internet of Things (IoT), Big Data, AI participation, Cyber-Physical Systems (CPSs), flexibility, adaptability, and customer-centricity across different parts of the supply chain. The application of Distributed AI (DAI) systems like Multi-Agent Systems (MAS) opens new horizons to enhance the efficiency, responsiveness, and intelligence of these supply chains. DAI facilitates advanced autonomous decision-making and real-time optimization at different stages of the agri-food supply chain, such as demand forecasting, inventory management, production planning, logistics optimization, and quality assurance and control. This article, by focusing on the case of scheduling through the entire supply chain, examines how DAI initiatives, including Multi-Agent Systems (MASs) enhanced with Case-Based Reasoning (CBR), enable the distribution of intelligence across smart, interconnected elements of the supply chain network. It is shown that through the use of DAI in SCM, the performance of the entire supply chain optimizes consistently and adaptively through the use of MAS, in which different parts of SCM collaborate as agents. Supply Chain 4.0 can gain autonomy, self-organization, self-optimization, self-adaptation, robustness, and flexibility, and its knowledge base can be enriched over time by using CBR to learn from past situations. It also discusses the opportunities and challenges associated with the adoption of DAI in Supply Chain 4.0, including operational efficiency, cost reduction, agility enhancement, and improved customer satisfaction. However, several concerns, such as data security, privacy issues, and interoperability, must be addressed.
AB - Supply Chain 4.0 is characterized by various factors, including seamless integration and connectivity, the Internet of Things (IoT), Big Data, AI participation, Cyber-Physical Systems (CPSs), flexibility, adaptability, and customer-centricity across different parts of the supply chain. The application of Distributed AI (DAI) systems like Multi-Agent Systems (MAS) opens new horizons to enhance the efficiency, responsiveness, and intelligence of these supply chains. DAI facilitates advanced autonomous decision-making and real-time optimization at different stages of the agri-food supply chain, such as demand forecasting, inventory management, production planning, logistics optimization, and quality assurance and control. This article, by focusing on the case of scheduling through the entire supply chain, examines how DAI initiatives, including Multi-Agent Systems (MASs) enhanced with Case-Based Reasoning (CBR), enable the distribution of intelligence across smart, interconnected elements of the supply chain network. It is shown that through the use of DAI in SCM, the performance of the entire supply chain optimizes consistently and adaptively through the use of MAS, in which different parts of SCM collaborate as agents. Supply Chain 4.0 can gain autonomy, self-organization, self-optimization, self-adaptation, robustness, and flexibility, and its knowledge base can be enriched over time by using CBR to learn from past situations. It also discusses the opportunities and challenges associated with the adoption of DAI in Supply Chain 4.0, including operational efficiency, cost reduction, agility enhancement, and improved customer satisfaction. However, several concerns, such as data security, privacy issues, and interoperability, must be addressed.
KW - Agri-food supply chain
KW - Case Based Reasoning (CBR)
KW - Distributed Artificial Intelligence (DAI)
KW - Multi-Agent Systems (MASs)
KW - Supply chain 4.0
UR - http://www.scopus.com/inward/record.url?scp=85189791150&partnerID=8YFLogxK
U2 - 10.1016/j.procs.2024.01.021
DO - 10.1016/j.procs.2024.01.021
M3 - Conference article
AN - SCOPUS:85189791150
SN - 1877-0509
VL - 232
SP - 211
EP - 220
JO - Procedia Computer Science
JF - Procedia Computer Science
T2 - 5th International Conference on Industry 4.0 and Smart Manufacturing, ISM 2023
Y2 - 22 November 2023 through 24 November 2023
ER -