TY - JOUR
T1 - Drosophila mir-9a regulates wing development via fine-tuning expression of the LIM only factor, dLMO
AU - Biryukova, Inna
AU - Asmar, Joëlle
AU - Abdesselem, Houari
AU - Heitzler, Pascal
PY - 2009/3/15
Y1 - 2009/3/15
N2 - MicroRNAs are short non-coding endogenous RNAs that are implicated in regulating various aspects of plants and animal development, however their functions in organogenesis are largely unknown. Here we report that mir-9a belonging to the mir-9 family, regulates Drosophila wing development through a functional target site in the 3′ untranslated region of the Drosophila LIM only protein, dLMO. dLMO is a transcription cofactor, that directly inhibits the activity of Apterous, the LIM-HD factor required for the proper dorsal identity of the wings. Deletions of the 3′ untranslated region, including the mir-9a site, generate gain-of-function dLMO mutants (Beadex) associated with high levels of dLMO mRNA and protein. Beadex mutants lack wing margins, a phenotype also observed in null mir-9a mutants. We found that mir-9a and dLMO are co-expressed in wing discs and interact genetically for controlling wing development. Lack of mir-9a results in overexpression of dLMO, while gain-of-function mir-9a mutant suppresses dLMO expression. These data indicate that a function of mir-9a is to ensure the appropriate stoichiometry of dLMO during Drosophila wing development. The mir-9a binding site is conserved in the human counterpart LMO2, the T-cell acute leukemia oncogene, suggesting that mir-9 might apply a similar strategy to maintain LMO2 expression under a detrimental threshold.
AB - MicroRNAs are short non-coding endogenous RNAs that are implicated in regulating various aspects of plants and animal development, however their functions in organogenesis are largely unknown. Here we report that mir-9a belonging to the mir-9 family, regulates Drosophila wing development through a functional target site in the 3′ untranslated region of the Drosophila LIM only protein, dLMO. dLMO is a transcription cofactor, that directly inhibits the activity of Apterous, the LIM-HD factor required for the proper dorsal identity of the wings. Deletions of the 3′ untranslated region, including the mir-9a site, generate gain-of-function dLMO mutants (Beadex) associated with high levels of dLMO mRNA and protein. Beadex mutants lack wing margins, a phenotype also observed in null mir-9a mutants. We found that mir-9a and dLMO are co-expressed in wing discs and interact genetically for controlling wing development. Lack of mir-9a results in overexpression of dLMO, while gain-of-function mir-9a mutant suppresses dLMO expression. These data indicate that a function of mir-9a is to ensure the appropriate stoichiometry of dLMO during Drosophila wing development. The mir-9a binding site is conserved in the human counterpart LMO2, the T-cell acute leukemia oncogene, suggesting that mir-9 might apply a similar strategy to maintain LMO2 expression under a detrimental threshold.
KW - 3′ UTR
KW - Drosophila
KW - Wing development
KW - dLMO
KW - miRNAs
UR - http://www.scopus.com/inward/record.url?scp=60549115223&partnerID=8YFLogxK
U2 - 10.1016/j.ydbio.2008.12.036
DO - 10.1016/j.ydbio.2008.12.036
M3 - Article
C2 - 19162004
AN - SCOPUS:60549115223
SN - 0012-1606
VL - 327
SP - 487
EP - 496
JO - Developmental Biology
JF - Developmental Biology
IS - 2
ER -