Dynamics of variable-geometry electrostatic microactuators

F. Najar, S. Choura, E. M. Abdel-Rahman*, S. El-Borgi, A. H. Nayfeh

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

This paper investigates the dynamic behavior of a microbeam-based electrostatic microactuator. The cross-section of the microbeam under consideration varies along its length. A mathematical model, accounting for the system nonlinearities due to mid-plane stretching and electrostatic forcing, is adopted and used to examine the microbeam dynamics. The Differential Quadrature Method (DQM) and Finite Difference Method (FDM) are used to discretize the partial-differential-integral equation representing the microbeam dynamics. The resulting nonlinear algebraic system is solved for the limit cycles of various microstructure geometries under combined DC-AC loads and the stability of these limit cycles is examined using Floquet theory. Results are presented to show the effect of variations in the geometry on the frequency-response curves of the microactuator. We examine the effect of varying the gap size and the microbeam thickness and width on the frequency-response curves for hardening-type and softening-type behaviors. We found that it is possible to tune the geometry of the microactuator to eliminate dynamic pull-in.

Original languageEnglish
Title of host publicationProceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Applied Mechanics Division
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)0791837904, 9780791837900
DOIs
Publication statusPublished - 2006
Externally publishedYes
Event2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Chicago, IL, United States
Duration: 5 Nov 200610 Nov 2006

Publication series

NameAmerican Society of Mechanical Engineers, Applied Mechanics Division, AMD
ISSN (Print)0160-8835

Conference

Conference2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006
Country/TerritoryUnited States
CityChicago, IL
Period5/11/0610/11/06

Fingerprint

Dive into the research topics of 'Dynamics of variable-geometry electrostatic microactuators'. Together they form a unique fingerprint.

Cite this