Effects of climate change on aerosol concentrations in Europe

A.G. Megaritis, Christos Fountoukis, S. N. Pandis

Research output: Contribution to conferenceAbstractpeer-review

Abstract

High concentrations of particulate matter less than 2.5 µm in size (PM2.5), ozone and other major constituents of air pollution, have adverse effects on human health, visibility and ecosystems (Seinfeld and Pandis, 2006), and are strongly influenced by meteorology. Emissions control policy is currently made assuming that climate will remain constant in the future. However, climate change over the next decades is expected to be significant (IPCC, 2007) and may impact local and regional air quality. Determining the sensitivity of the concentrations of air pollutants to climate change is an important step toward estimating future air quality. In this study we applied PMCAMx (Fountoukis et al., 2011), a three dimensional chemical transport model, over Europe, in order to quantify the individual effects of various meteorological parameters on fine particulate matter (PM2.5) concentrations. A suite of perturbations in various meteorological factors, such as temperature, wind speed, absolute humidity and precipitation were imposed separately on base case conditions to determine the sensitivities of PM2.5 concentrations and composition to these parameters. Different simulation periods (summer, autumn 2008 and winter 2009) are used to examine also the seasonal dependence of the air quality – climate interactions. The results of these sensitivity simulations suggest that there is an important link between changes in meteorology and PM2.5 levels. We quantify through separate sensitivity simulations the processes which are mainly responsible for the final predicted changes in PM2.5 concentration and composition. The predicted PM2.5 response to those meteorology perturbations was found to be quite variable in space and time. These results suggest that, the changes in concentrations caused by changes in climate should be taken into account in long-term air quality planning.
Original languageEnglish
Publication statusPublished - 2013
Externally publishedYes
EventEGU General Assembly 2013 - Vienna, Austria
Duration: 7 Apr 201312 Apr 2013

Conference

ConferenceEGU General Assembly 2013
Country/TerritoryAustria
CityVienna
Period7/04/1312/04/13

Fingerprint

Dive into the research topics of 'Effects of climate change on aerosol concentrations in Europe'. Together they form a unique fingerprint.

Cite this