TY - GEN
T1 - Efficient SVM training with reduced weighted samples
AU - Nguyen, Giang Hoang
AU - Phung, Son Lam
AU - Bouzerdoum, Abdesselam
PY - 2010
Y1 - 2010
N2 - This paper presents an efficient training approach for support vector machines that will improve their ability to learn from a large or imbalanced data set. Given an original training set, the proposed approach applies unsupervised learning to extract a smaller set of salient training exemplars, which are represented by weighted cluster centers and the target outputs. In subsequent supervised learning, the objective function is modified by introducing a weight for each new training sample and the corresponding penalty term. In this paper, we investigate two methods of defining the weight based on cluster vectors. The proposed SVM training is implemented and tested on two problems: (i) gender classification of facial images using the FERET data set; (ii) income prediction using the UCI Adult Census data set. Experiment results show that compared to standard SVM training, the proposed approach leads to much faster SVM training, produces a more compact classifier while maintaining generalization ability.
AB - This paper presents an efficient training approach for support vector machines that will improve their ability to learn from a large or imbalanced data set. Given an original training set, the proposed approach applies unsupervised learning to extract a smaller set of salient training exemplars, which are represented by weighted cluster centers and the target outputs. In subsequent supervised learning, the objective function is modified by introducing a weight for each new training sample and the corresponding penalty term. In this paper, we investigate two methods of defining the weight based on cluster vectors. The proposed SVM training is implemented and tested on two problems: (i) gender classification of facial images using the FERET data set; (ii) income prediction using the UCI Adult Census data set. Experiment results show that compared to standard SVM training, the proposed approach leads to much faster SVM training, produces a more compact classifier while maintaining generalization ability.
UR - http://www.scopus.com/inward/record.url?scp=79959405681&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2010.5596745
DO - 10.1109/IJCNN.2010.5596745
M3 - Conference contribution
AN - SCOPUS:79959405681
SN - 9781424469178
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 International Joint Conference on Neural Networks, IJCNN 2010
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2010 6th IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 International Joint Conference on Neural Networks, IJCNN 2010
Y2 - 18 July 2010 through 23 July 2010
ER -