TY - GEN
T1 - Electrostatic study of Alanine mutational effects on transcription
T2 - 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
AU - El-Assaad, Atlal
AU - Dawy, Zaher
AU - Nemer, Georges
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/11/4
Y1 - 2015/11/4
N2 - Protein-DNA interaction is of fundamental importance in molecular biology, playing roles in functions as diverse as DNA transcription, DNA structure formation, and DNA repair. Protein-DNA association is also important in medicine; understanding Protein-DNA binding kinetics can assist in identifying disease root causes which can contribute to drug development. In this perspective, this work focuses on the transcription process by the GATA Transcription Factor (TF). GATA TF binds to DNA promoter region represented by 'G,A,T,A' nucleotides sequence, and initiates transcription of target genes. When proper regulation fails due to some mutations on the GATA TF protein sequence or on the DNA promoter sequence (weak promoter), deregulation of the target genes might lead to various disorders. In this study, we aim to understand the electrostatic mechanism behind GATA TF and DNA promoter interactions, in order to predict Protein-DNA binding in the presence of mutations, while elaborating on non-covalent binding kinetics. To generate a family of mutants for the GATA:DNA complex, we replaced every charged amino acid, one at a time, with a neutral amino acid like Alanine (Ala). We then applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations, for each mutation. These calculations delineate the contribution to binding from each Ala-replaced amino acid in the GATA:DNA interaction. After analyzing the obtained data in view of a two-step model, we are able to identify potential key amino acids in binding. Finally, we applied the model to GATA-3:DNA (crystal structure with PDB-ID: 3DFV) binding complex and validated it against experimental results from the literature.
AB - Protein-DNA interaction is of fundamental importance in molecular biology, playing roles in functions as diverse as DNA transcription, DNA structure formation, and DNA repair. Protein-DNA association is also important in medicine; understanding Protein-DNA binding kinetics can assist in identifying disease root causes which can contribute to drug development. In this perspective, this work focuses on the transcription process by the GATA Transcription Factor (TF). GATA TF binds to DNA promoter region represented by 'G,A,T,A' nucleotides sequence, and initiates transcription of target genes. When proper regulation fails due to some mutations on the GATA TF protein sequence or on the DNA promoter sequence (weak promoter), deregulation of the target genes might lead to various disorders. In this study, we aim to understand the electrostatic mechanism behind GATA TF and DNA promoter interactions, in order to predict Protein-DNA binding in the presence of mutations, while elaborating on non-covalent binding kinetics. To generate a family of mutants for the GATA:DNA complex, we replaced every charged amino acid, one at a time, with a neutral amino acid like Alanine (Ala). We then applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations, for each mutation. These calculations delineate the contribution to binding from each Ala-replaced amino acid in the GATA:DNA interaction. After analyzing the obtained data in view of a two-step model, we are able to identify potential key amino acids in binding. Finally, we applied the model to GATA-3:DNA (crystal structure with PDB-ID: 3DFV) binding complex and validated it against experimental results from the literature.
UR - http://www.scopus.com/inward/record.url?scp=84953287280&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2015.7319272
DO - 10.1109/EMBC.2015.7319272
M3 - Conference contribution
C2 - 26737172
AN - SCOPUS:84953287280
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 4005
EP - 4008
BT - 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 25 August 2015 through 29 August 2015
ER -