TY - JOUR
T1 - Energy-Efficient Device Assignment and Task Allocation in Multi-Orchestrator Mobile Edge Learning
AU - Allahham, Mhd Saria
AU - Sorour, Sameh
AU - Mohamed, Amr
AU - Erbad, Aiman
AU - Guizani, Mohsen
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - Mobile Edge Learning (MEL) is a decentralized learning paradigm that enables resource-constrained IoT devices to either learn a shared model without sharing the data, or to distribute the learning task with the data to other IoT devices and utilize their available resources. In the former case, IoT devices (a.k.a learners) need to be assigned an orchestrator to facilitate the learning and models' aggregation from different learners. Whereas in the latter case, IoT devices act as orchestrators and look for learners with available resources to distribute the learning task to. However, the coexistence of multiple learning problems in an environment with limited resources poses the learners-orchestrator assignment problem. To this end, we aim to develop an energy-efficient learner assignment and task allocation scheme, in which each orchestrator gets assigned a group of learners based on their communication channel qualities and computational resources. We formulate and solve a multi-objective optimization problem to minimize the total energy consumption and maximize the learning accuracy. To reduce the solution complexity, we also propose a lightweight heuristic algorithm that can achieve near-optimal performance. The conducted simulations show that our proposed approaches can execute multiple learning tasks efficiently and significantly reduce energy consumption compared to current state-of-art methods.
AB - Mobile Edge Learning (MEL) is a decentralized learning paradigm that enables resource-constrained IoT devices to either learn a shared model without sharing the data, or to distribute the learning task with the data to other IoT devices and utilize their available resources. In the former case, IoT devices (a.k.a learners) need to be assigned an orchestrator to facilitate the learning and models' aggregation from different learners. Whereas in the latter case, IoT devices act as orchestrators and look for learners with available resources to distribute the learning task to. However, the coexistence of multiple learning problems in an environment with limited resources poses the learners-orchestrator assignment problem. To this end, we aim to develop an energy-efficient learner assignment and task allocation scheme, in which each orchestrator gets assigned a group of learners based on their communication channel qualities and computational resources. We formulate and solve a multi-objective optimization problem to minimize the total energy consumption and maximize the learning accuracy. To reduce the solution complexity, we also propose a lightweight heuristic algorithm that can achieve near-optimal performance. The conducted simulations show that our proposed approaches can execute multiple learning tasks efficiently and significantly reduce energy consumption compared to current state-of-art methods.
KW - distributed learning
KW - edge learning
KW - edge networks
UR - http://www.scopus.com/inward/record.url?scp=85184380892&partnerID=8YFLogxK
U2 - 10.1109/GLOBECOM46510.2021.9686019
DO - 10.1109/GLOBECOM46510.2021.9686019
M3 - Conference article
AN - SCOPUS:85184380892
SN - 2334-0983
JO - Proceedings - IEEE Global Communications Conference, GLOBECOM
JF - Proceedings - IEEE Global Communications Conference, GLOBECOM
T2 - 2021 IEEE Global Communications Conference, GLOBECOM 2021
Y2 - 7 December 2021 through 11 December 2021
ER -