Abstract
In this study, magnetic Zinc Ferrite (ZnFe2O4)@TiO2 nanofibers were prepared by low cost and nontoxic route; hydrothermal technique followed by electrospinning process. The prepared magnetic ZnFe2O4@TiO2 nanofibers were morphologically and structurally analyzed by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), and thermal gravimetric analysis (TGA). The prepared magnetic ZnFe2O4@TiO2 nanofibers were utilized as photoanode for the fabrication of dye-sensitized solar cells (DSSCs) and presented applicable performance with 4.2% overall conversion efficiency with high short circuit current density (JSC) of 10.16 mA/cm2. The maximum ∼42% incident photo-to-current conversion efficiency (IPCE) value was also recorded at 530 nm. In addition, ZnFe2O4@TiO2 nanofibers were not only possessed the good conversion efficiency, but also shown excellent photocatalytic efficiency with magnetic properties towards the dye remediation. Prepared ZnFe2O4@TiO2 nanofibers can be considered as a promising material for energy conversion and environmental applications.
Original language | English |
---|---|
Pages (from-to) | 477-483 |
Number of pages | 7 |
Journal | Journal of Alloys and Compounds |
Volume | 723 |
DOIs | |
Publication status | Published - 5 Nov 2017 |
Externally published | Yes |
Keywords
- Electrospinning
- Hydrothermal method
- Photoanode
- Photocatalyst
- Solar cells
- Zinc ferrite