Enhanced monitoring using PCA-based GLR fault detection and multiscale filtering

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Citations (Scopus)

Abstract

One of the most popular multivariate statistical methods used for data-based process monitoring is Principal Component Analysis (PCA). In the absence of a process model, PCA has been successfully used as a data-based FD technique for highly correlated process variables. Some of the PCA detection indices include the T2 or Q statistics, which have their advantages and disadvantages. When a process model is available, however, the generalized likelihood ratio (GLR) test, which is a statistical hypothesis testing method, has shown good fault detection abili ties. In this work, a PCA-based GLR fault detection algorithm is developed to exploit the advantages of the GLR test in the absence of a process model. In fact, PCA is used to provide a modeling framework for the develop fault detection algorithm. The PCA-based GLR fault detection algorithm provides optimal properties by maximizing the detection probability of faults for a given false alarm rate. However, the presence of measurement noise and modeling errors increase the rate of false alarms. Therefore, to further improve the quality of fault detection, multiscale filtering is utilized to filter the residuals obtained from the PCA model, which helps suppress the effect on errors, and thus decrease the false alarm rate. The proposed fault detection methodology is demonstrated through its application to monitor the ozone level in the Upper Normandy region, France, and it is shown to effectively reduce the rate of false alarms whilst retaining the capability of detecting process faults.

Original languageEnglish
Title of host publicationProceedings of the 2013 IEEE Symposium on Computational Intelligence in Control and Automation, CICA 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013
Pages1-8
Number of pages8
DOIs
Publication statusPublished - 2013
Externally publishedYes
Event2013 3rd IEEE Symposium on Computational Intelligence in Control and Automation, CICA 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013 - Singapore, Singapore
Duration: 16 Apr 201319 Apr 2013

Publication series

NameProceedings of the 2013 IEEE Symposium on Computational Intelligence in Control and Automation, CICA 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013

Conference

Conference2013 3rd IEEE Symposium on Computational Intelligence in Control and Automation, CICA 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013
Country/TerritorySingapore
CitySingapore
Period16/04/1319/04/13

Fingerprint

Dive into the research topics of 'Enhanced monitoring using PCA-based GLR fault detection and multiscale filtering'. Together they form a unique fingerprint.

Cite this