TY - GEN
T1 - Enhanced monitoring using PCA-based GLR fault detection and multiscale filtering
AU - Harrou, Fouzi
AU - Nounou, Mohamed N.
AU - Nounou, Hazem N.
PY - 2013
Y1 - 2013
N2 - One of the most popular multivariate statistical methods used for data-based process monitoring is Principal Component Analysis (PCA). In the absence of a process model, PCA has been successfully used as a data-based FD technique for highly correlated process variables. Some of the PCA detection indices include the T2 or Q statistics, which have their advantages and disadvantages. When a process model is available, however, the generalized likelihood ratio (GLR) test, which is a statistical hypothesis testing method, has shown good fault detection abili ties. In this work, a PCA-based GLR fault detection algorithm is developed to exploit the advantages of the GLR test in the absence of a process model. In fact, PCA is used to provide a modeling framework for the develop fault detection algorithm. The PCA-based GLR fault detection algorithm provides optimal properties by maximizing the detection probability of faults for a given false alarm rate. However, the presence of measurement noise and modeling errors increase the rate of false alarms. Therefore, to further improve the quality of fault detection, multiscale filtering is utilized to filter the residuals obtained from the PCA model, which helps suppress the effect on errors, and thus decrease the false alarm rate. The proposed fault detection methodology is demonstrated through its application to monitor the ozone level in the Upper Normandy region, France, and it is shown to effectively reduce the rate of false alarms whilst retaining the capability of detecting process faults.
AB - One of the most popular multivariate statistical methods used for data-based process monitoring is Principal Component Analysis (PCA). In the absence of a process model, PCA has been successfully used as a data-based FD technique for highly correlated process variables. Some of the PCA detection indices include the T2 or Q statistics, which have their advantages and disadvantages. When a process model is available, however, the generalized likelihood ratio (GLR) test, which is a statistical hypothesis testing method, has shown good fault detection abili ties. In this work, a PCA-based GLR fault detection algorithm is developed to exploit the advantages of the GLR test in the absence of a process model. In fact, PCA is used to provide a modeling framework for the develop fault detection algorithm. The PCA-based GLR fault detection algorithm provides optimal properties by maximizing the detection probability of faults for a given false alarm rate. However, the presence of measurement noise and modeling errors increase the rate of false alarms. Therefore, to further improve the quality of fault detection, multiscale filtering is utilized to filter the residuals obtained from the PCA model, which helps suppress the effect on errors, and thus decrease the false alarm rate. The proposed fault detection methodology is demonstrated through its application to monitor the ozone level in the Upper Normandy region, France, and it is shown to effectively reduce the rate of false alarms whilst retaining the capability of detecting process faults.
UR - http://www.scopus.com/inward/record.url?scp=84885992978&partnerID=8YFLogxK
U2 - 10.1109/CICA.2013.6611656
DO - 10.1109/CICA.2013.6611656
M3 - Conference contribution
AN - SCOPUS:84885992978
SN - 9781467358934
T3 - Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Control and Automation, CICA 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013
SP - 1
EP - 8
BT - Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Control and Automation, CICA 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013
T2 - 2013 3rd IEEE Symposium on Computational Intelligence in Control and Automation, CICA 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013
Y2 - 16 April 2013 through 19 April 2013
ER -