Abstract
An enhanced water flux and anti-fouling nanocomposite ultrafiltration membrane based on quaternary ammoniumpropylated polysilsesquioxane (QAPS)/cellulose acetate (QAPS@CA) was fabricated by in situ sol-gel processing via phase inversion followed by quaternization with methyl iodide (CH3I). Membrane characterizations were performed based on the contact angle, FTIR, SEM, and TGA properties. Membrane separation performance was assessed in terms of pure water flux, rejection, and fouling resistance. The 7%QAPS@CA nanocomposite membrane showed an increased wettability (46.6 degrees water contact angle), water uptake (113%) and a high pure water permeability of similar to 370 L m(-2) h(-1) bar(-1). Furthermore, the 7%QAPS@CA nanocomposite membrane exhibited excellent bactericidal properties (similar to 97.5% growth inhibition) against Escherichia coli (E. coli) compared to the bare CA membrane (0% growth inhibition). The 7%QAPS@CA nanocomposite membrane can be recommended for water treatment and biomedical applications.
Original language | English |
---|---|
Article number | 133144 |
Number of pages | 10 |
Journal | Chemosphere |
Volume | 289 |
DOIs | |
Publication status | Published - Feb 2022 |
Keywords
- Cellulose acetate
- Mixed matrix
- Nanocomposite
- Polysilsesquioxane
- Ultrafiltration
- Water treatment