TY - JOUR
T1 - Epigenetic Dysregulation in the Prefrontal Cortex of Suicide Completers
AU - Schneider, Eberhard
AU - El Hajj, Nady
AU - Müller, Fabian
AU - Navarro, Bianca
AU - Haaf, Thomas
N1 - Publisher Copyright:
© 2015 The Author(s) Published by S. Karger AG, Basel.
PY - 2015/9/29
Y1 - 2015/9/29
N2 - The epigenome is thought to mediate between genes and the environment, particularly in response to adverse life experiences. Similar to other psychiatric diseases, the suicide liability of an individual appears to be influenced by many genetic factors of small effect size as well as by environmental stressors. To identify epigenetic marks associated with suicide, which is considered the endpoint of complex gene-environment interactions, we compared the cortex DNA methylation patterns of 6 suicide completers versus 6 non-psychiatric sudden-death controls, using Illumina 450K methylation arrays. Consistent with a multifactorial disease model, we found DNA methylation changes in a large number of genes, but no changes with large effects reaching genome-wide significance. Global methylation of all analyzed CpG sites was significantly (0.25 percentage point) lower in suicide than in control brains, whereas the vast majority (97%) of the top 1,000 differentially methylated regions (DMRs) were higher methylated (0.6 percentage point) in suicide brains. Annotation analysis of the top 1,000 DMRs revealed an enrichment of differentially methylated promoters in functional categories associated with transcription and expression in the brain. In addition, we performed a comprehensive literature research to identify suicide genes that have been replicated in independent genetic association, brain methylation and/or expression studies. Although, in general, there was no significant overlap between different published data sets or between our top 1,000 DMRs and published data sets, our methylation screen strengthens a number of candidate genes (APLP2, BDNF, HTR1A, NUAK1, PHACTR3, MSMP, SLC6A4, SYN2, and SYNE2) and supports a role for epigenetics in the pathophysiology of suicide.
AB - The epigenome is thought to mediate between genes and the environment, particularly in response to adverse life experiences. Similar to other psychiatric diseases, the suicide liability of an individual appears to be influenced by many genetic factors of small effect size as well as by environmental stressors. To identify epigenetic marks associated with suicide, which is considered the endpoint of complex gene-environment interactions, we compared the cortex DNA methylation patterns of 6 suicide completers versus 6 non-psychiatric sudden-death controls, using Illumina 450K methylation arrays. Consistent with a multifactorial disease model, we found DNA methylation changes in a large number of genes, but no changes with large effects reaching genome-wide significance. Global methylation of all analyzed CpG sites was significantly (0.25 percentage point) lower in suicide than in control brains, whereas the vast majority (97%) of the top 1,000 differentially methylated regions (DMRs) were higher methylated (0.6 percentage point) in suicide brains. Annotation analysis of the top 1,000 DMRs revealed an enrichment of differentially methylated promoters in functional categories associated with transcription and expression in the brain. In addition, we performed a comprehensive literature research to identify suicide genes that have been replicated in independent genetic association, brain methylation and/or expression studies. Although, in general, there was no significant overlap between different published data sets or between our top 1,000 DMRs and published data sets, our methylation screen strengthens a number of candidate genes (APLP2, BDNF, HTR1A, NUAK1, PHACTR3, MSMP, SLC6A4, SYN2, and SYNE2) and supports a role for epigenetics in the pathophysiology of suicide.
KW - Cortex
KW - DNA methylation
KW - Suicidal behavior
KW - Transcription regulation
UR - http://www.scopus.com/inward/record.url?scp=84941932868&partnerID=8YFLogxK
U2 - 10.1159/000435778
DO - 10.1159/000435778
M3 - Article
C2 - 26160260
AN - SCOPUS:84941932868
SN - 1424-8581
VL - 146
SP - 19
EP - 27
JO - Cytogenetic and Genome Research
JF - Cytogenetic and Genome Research
IS - 1
ER -