Ethical Frameworks for Machine Learning in Sensitive Healthcare Applications

Haseeb Javed, Hafiz Abdul Muqeet, Tahir Javed, Atiq Ur Rehman*, Rizwan Sadiq

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

The application of Machine Learning (ML) in healthcare has opened unprecedented avenues for predictive analytics, diagnostics, and personalized medicine. However, the sensitivity of healthcare data and the ethical dilemmas associated with automated decision-making necessitate a rigorous ethical framework. This review paper aims to provide a comprehensive overview of the existing ethical frameworks that guide ML in healthcare and evaluates their adequacy in ad-dressing ethical challenges. Specifically, this article offers an in-depth examination of prevailing ethical constructs that oversee healthcare ML, spotlighting pivotal concerns: data protection, in-formed assent, equity, and patient autonomy. Various analytical approaches including quantitative metrics, statistical methods for bias detection, and qualitative thematic analyses are applied to address these challenges. Insights are further enriched through case studies of Clinical Decision Support Systems, Remote Patient Monitoring, and Telemedicine Applications. Each case is evaluated against existing ethical frameworks to identify limitations and gaps. Based on our com-prehensive review and evaluation, we propose actionable recommendations for evolving ethical guidelines. The paper concludes by summarizing key findings and underscoring the urgent need for robust ethical frameworks to guide ML applications in sensitive healthcare environments. Future work should focus on the development and empirical validation of new ethical frameworks that can adapt to emerging technologies and ethical dilemmas in healthcare ML.

Original languageEnglish
Pages (from-to)16233-16254
Number of pages22
JournalIEEE Access
Volume12
DOIs
Publication statusPublished - 2024
Externally publishedYes

Keywords

  • Ethical frameworks
  • data privacy
  • healthcare applications
  • machine learning

Fingerprint

Dive into the research topics of 'Ethical Frameworks for Machine Learning in Sensitive Healthcare Applications'. Together they form a unique fingerprint.

Cite this