Abstract
The impact of increasing fines content on the performance of unbound (unstabilized) and lightly stabilized aggregate systems was evaluated. The aggregate systems analyzed varied in amount of mineral fines, the moisture state during curing and at the time of testing, and the amount of port-land cement used to stabilize the blend. The evaluation was based on measurements of anisotropic resilient properties, permanent deformation, and unconfined compressive strengths of aggregate systems. In addition, the nonlinear anisotropic resilient properties of the aggregate blends were used in a finite element program to determine critical pavement responses. Aggregate systems with higher fines content were, as expected, more sensitive to moisture than control systems with standard fines content. The increase in the fines content in the unbound systems when molding moisture was wet of optimum dramatically diminished the quality of performance. However, the aggregate systems with higher fines benefited considerably from low percentages of cement stabilizer. It was found that with the proper design of fines content, cement content, and moisture, the performance of the stabilized systems with high fines content can perform equivalent to or even better than the systems with standard fines content. This was clearly evinced by enhancing the resilient properties (increase in stiffness and decrease in anisotropy), decreasing the rate and magnitude of permanent deformation, and increasing compressive strength. The beneficial use of mineral fines will result in benefit to the aggregate industry.
Original language | English |
---|---|
Title of host publication | Geomaterials 2007 |
Publisher | National Research Council |
Pages | 81-88 |
Number of pages | 8 |
Edition | 2026 |
ISBN (Print) | 9780309104531 |
DOIs | |
Publication status | Published - 2007 |
Externally published | Yes |