TY - JOUR
T1 - Extracting factors associated with vaccination from Twitter data and mapping to behavioral models
AU - Biswas, Md. Rafiul
AU - Shah, Zubair
N1 - Publisher Copyright:
© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
PY - 2023/12/15
Y1 - 2023/12/15
N2 - Social media platform, particularly Twitter, is a rich data source that allows monitoring of public opinions and attitudes toward vaccines.Established behavioral models like the 5C psychological antecedents model and the Health Belief Model (HBM) provide a well-structured framework for analyzing shifts in vaccine-related behavior. This study examines if the extracted data from Twitter contains valuable insights regarding public attitudes toward vaccines and can be mapped to two behavioral models. This study focuses on the Arab population, and a search was carried out on Twitter using: ' OR OR OR OR ' for two years from January 2020 to January 2022. Then, BERTopicmodeling was applied, and several topics were extracted. Finally, the topics were manually mapped to the factors of the 5C model and HBM. 1,068,466 unique users posted 3,368,258 vaccine-related tweets in Arabic. Topic modeling generated 25 topics, which were mapped to the 15 factors of the 5C model and HBM. Among the users, 32.87%were male, and 18.06% were female. A significant 55.77% of the users were from the MENA (Middle East and North Africa) region. Twitter users were more inclined to accept vaccines when they trusted vaccine safety and effectiveness, but vaccine hesitancy increased due to conspiracy theories and misinformation. The association of topics with these theoretical frameworks reveals the availability and diversity of Twitter data that can predict behavioral change toward vaccines. It allows the preparation of timely and effective interventions for vaccination programs compared to traditional methods.
AB - Social media platform, particularly Twitter, is a rich data source that allows monitoring of public opinions and attitudes toward vaccines.Established behavioral models like the 5C psychological antecedents model and the Health Belief Model (HBM) provide a well-structured framework for analyzing shifts in vaccine-related behavior. This study examines if the extracted data from Twitter contains valuable insights regarding public attitudes toward vaccines and can be mapped to two behavioral models. This study focuses on the Arab population, and a search was carried out on Twitter using: ' OR OR OR OR ' for two years from January 2020 to January 2022. Then, BERTopicmodeling was applied, and several topics were extracted. Finally, the topics were manually mapped to the factors of the 5C model and HBM. 1,068,466 unique users posted 3,368,258 vaccine-related tweets in Arabic. Topic modeling generated 25 topics, which were mapped to the 15 factors of the 5C model and HBM. Among the users, 32.87%were male, and 18.06% were female. A significant 55.77% of the users were from the MENA (Middle East and North Africa) region. Twitter users were more inclined to accept vaccines when they trusted vaccine safety and effectiveness, but vaccine hesitancy increased due to conspiracy theories and misinformation. The association of topics with these theoretical frameworks reveals the availability and diversity of Twitter data that can predict behavioral change toward vaccines. It allows the preparation of timely and effective interventions for vaccination programs compared to traditional methods.
KW - 5C model
KW - Covid-19
KW - Attitudes
KW - Behavior
KW - Health belief model
KW - Vaccination
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=hbku_researchportal&SrcAuth=WosAPI&KeyUT=WOS:001109846200001&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.1080/21645515.2023.2281729
DO - 10.1080/21645515.2023.2281729
M3 - Article
C2 - 38013461
SN - 2164-5515
VL - 19
JO - Human Vaccines and Immunotherapeutics
JF - Human Vaccines and Immunotherapeutics
IS - 3
M1 - 2281729
ER -