Extraction des nombres de Betti avec un modèle géné ratif

Translated title of the contribution: Extraction of Betti numbers with a generative model

Maxime Maillot, Michaël Aupetit, Gérard Govaert

Research output: Contribution to journalConference articlepeer-review

Abstract

Exploring multidimensional data is a complex analytic task. We propose a generative model called Generative Simplicial Complex, to extract topological invariants called Betti numbers from the data. The GSC is used to analyze toys data and image data. The GSC appears to be more robust to noise than the Witness Complex, a state of the art geometrical technique to extract Betti numbers of point set data.

Translated title of the contributionExtraction of Betti numbers with a generative model
Original languageFrench
Pages (from-to)97-102
Number of pages6
JournalRevue des Nouvelles Technologies de l'Information
VolumeE.24
Publication statusPublished - 2013
Externally publishedYes
Event13emes Journees Francophones sur l'Extraction et la Gestion des Connaissances, EGC 2013 - 13th French-Speaking Conference on Knowledge Discovery and Management, EGC 2013 - Toulouse, France
Duration: 29 Jan 20131 Feb 2013

Fingerprint

Dive into the research topics of 'Extraction of Betti numbers with a generative model'. Together they form a unique fingerprint.

Cite this