Abstract
In this paper, a novel CMOS-compatible ZnO nanocomb-based gas sensor is presented. Compared with previously reported implementations, the proposed ZnO nanocombs feature multiple conducting channels and much larger effective sensing area, both of which result in dramatically improved sensitivity (6.54 for 250 ppm CO), response time (3.4 min) and recovery time (0.24 min). In addition, by operating the gas sensor at room temperature, additional power-hungry heating components inevitable in traditional implementations are completely removed. This not only leads to low power consumption, but also avoids the high-temperature-caused reliability degradation when integrated with CMOS circuitry.
Original language | English |
---|---|
Pages | 3270-3273 |
Number of pages | 4 |
DOIs | |
Publication status | Published - 2012 |
Externally published | Yes |
Event | 2012 IEEE International Symposium on Circuits and Systems, ISCAS 2012 - Seoul, Korea, Republic of Duration: 20 May 2012 → 23 May 2012 |
Conference
Conference | 2012 IEEE International Symposium on Circuits and Systems, ISCAS 2012 |
---|---|
Country/Territory | Korea, Republic of |
City | Seoul |
Period | 20/05/12 → 23/05/12 |