Fake news detection in social media using graph neural networks and NLP techniques: A COVID-19 use-case

Abdullah Hamid, Nasrullah Sheikh, Naina Said, Kashif Ahmad, Asma Gul, Laiq Hasan, Ala Al-Fuqaha

    Research output: Contribution to journalConference articlepeer-review

    3 Citations (Scopus)

    Abstract

    The paper presents our solutions for the MediaEval 2020 task namely FakeNews: Corona Virus and 5G Conspiracy Multimedia Twitter-Data-Based Analysis. The task aims to analyze tweets related to COVID-19 and 5G conspiracy theories to detect misinformation spreaders. The task is composed of two sub-tasks namely (i) text-based, and (ii) structure-based fake news detection. For the first task, we propose six different solutions relying on Bag of Words (BoW) and BERT embedding. Three of the methods aim at binary classification task by differentiating in 5G conspiracy and the rest of the COVID-19 related tweets while the rest of them treat the task as ternary classification problem. In the ternary classification task, our BoW and BERT based methods obtained an F1-score of .606% and .566% on the development set, respectively. On the binary classification, the BoW and BERT based solutions obtained an average F1-score of .666% and .693%, respectively. On the other hand, for structure-based fake news detection, we rely on Graph Neural Networks (GNNs) achieving an average ROC of .95% on the development set.

    Original languageEnglish
    JournalCEUR Workshop Proceedings
    Volume2882
    Publication statusPublished - 2020
    EventMultimedia Evaluation Benchmark Workshop 2020, MediaEval 2020 - Virtual, Online
    Duration: 14 Dec 202015 Dec 2020

    Fingerprint

    Dive into the research topics of 'Fake news detection in social media using graph neural networks and NLP techniques: A COVID-19 use-case'. Together they form a unique fingerprint.

    Cite this