Abstract
This paper presents FarSpeech, QCRI's combined Arabic speech recognition, natural language processing (NLP), and dialect identification pipeline. It features modern web technologies to capture live audio, transcribes Arabic audio, NLP processes the transcripts, and identifies the dialect of the speaker. For transcription, we use QATS, which is a Kaldi-based ASR system that uses Time Delay Neural Networks (TDNN). For NLP, we use a SOTA Arabic NLP toolkit that employs various deep neural network and SVM based models. Finally, our dialect identification system uses multi-modality from both acoustic and linguistic input. FarSpeech1 presents different screens to display the transcripts, text segmentation, part-of-speech tags, recognized named entities, diacritized text, and the identified dialect of the speech.
Original language | English |
---|---|
Pages (from-to) | 2372-2373 |
Number of pages | 2 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Volume | 2019-September |
DOIs | |
Publication status | Published - 2019 |
Event | 20th Annual Conference of the International Speech Communication Association: Crossroads of Speech and Language, INTERSPEECH 2019 - Graz, Austria Duration: 15 Sept 2019 → 19 Sept 2019 |
Keywords
- Live speech recognition
- Natural Language Processing
- Speech Transcription