TY - JOUR
T1 - Fitness Level- and Sex-Related Differences in Macrovascular and Microvascular Responses during Reactive Hyperemia
AU - Rasica, LETIZIA
AU - Inglis, ERIN CALAINE
AU - Iannetta, DANILO
AU - Soares, ROGERIO N.
AU - Murias, JUAN M.
N1 - Publisher Copyright:
© Lippincott Williams & Wilkins.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - Purpose Reactive hyperemia (RH) is widely used for the investigation of macrovascular (flow-mediated dilation, or FMD) and microvascular (near-infrared spectroscopy-vascular occlusion test, or NIRS-VOT) function. Mixed results have been reported on fitness level- and sex-related differences in FMD outcomes, and little is known about microvascular differences in untrained and chronically trained males and females. Methods Fifteen chronically trained (CT: 8 males, 7 females) and 16 untrained (UT: 8 males, 8 females) individuals participated in this study. Aerobic fitness (V˙O2max) was assessed during a cycling incremental exercise test to volitional exhaustion. FMD and NIRS-VOT were performed simultaneously on the lower limb investigating superficial femoral artery and vastus lateralis muscle, respectively. Results %FMD was not different between groups (CT males, 4.62 ± 1.42; CT females, 4.15 ± 2.23; UT males, 5.10 ± 2.53; CT females, 3.20 ± 1.67). Peak blood flow showed greater values in CT versus UT (P ≤ 0.0001) and males versus females (P = 0.032). RH blood flow area under the curve was greater in CT versus UT (P = 0.001). At the microvascular level, desaturation and reperfusion rates were faster in CT versus UT (P = 0.018 and P = 0.013) and males versus females (P = 0.011 and P = 0.005). V˙O2max was significantly correlated with reperfusion rate (P = 0.0005) but not with %FMD. Conclusions Whereas NIRS-VOT outcomes identified fitness- and sex-related differences in vascular responses, %FMD did not. However, when RH-related outcomes from the FMD analysis were considered, fitness- and/or sex-related differences were detected. These data highlight the importance of integrating FMD and NIRS-VOT outcomes for a more comprehensive evaluation of vascular function.
AB - Purpose Reactive hyperemia (RH) is widely used for the investigation of macrovascular (flow-mediated dilation, or FMD) and microvascular (near-infrared spectroscopy-vascular occlusion test, or NIRS-VOT) function. Mixed results have been reported on fitness level- and sex-related differences in FMD outcomes, and little is known about microvascular differences in untrained and chronically trained males and females. Methods Fifteen chronically trained (CT: 8 males, 7 females) and 16 untrained (UT: 8 males, 8 females) individuals participated in this study. Aerobic fitness (V˙O2max) was assessed during a cycling incremental exercise test to volitional exhaustion. FMD and NIRS-VOT were performed simultaneously on the lower limb investigating superficial femoral artery and vastus lateralis muscle, respectively. Results %FMD was not different between groups (CT males, 4.62 ± 1.42; CT females, 4.15 ± 2.23; UT males, 5.10 ± 2.53; CT females, 3.20 ± 1.67). Peak blood flow showed greater values in CT versus UT (P ≤ 0.0001) and males versus females (P = 0.032). RH blood flow area under the curve was greater in CT versus UT (P = 0.001). At the microvascular level, desaturation and reperfusion rates were faster in CT versus UT (P = 0.018 and P = 0.013) and males versus females (P = 0.011 and P = 0.005). V˙O2max was significantly correlated with reperfusion rate (P = 0.0005) but not with %FMD. Conclusions Whereas NIRS-VOT outcomes identified fitness- and sex-related differences in vascular responses, %FMD did not. However, when RH-related outcomes from the FMD analysis were considered, fitness- and/or sex-related differences were detected. These data highlight the importance of integrating FMD and NIRS-VOT outcomes for a more comprehensive evaluation of vascular function.
KW - Chronically trained
KW - Conduit artery blood flow
KW - Females
KW - Males
KW - Reperfusion rate
KW - Untrained
UR - http://www.scopus.com/inward/record.url?scp=85122702877&partnerID=8YFLogxK
U2 - 10.1249/MSS.0000000000002806
DO - 10.1249/MSS.0000000000002806
M3 - Article
C2 - 34652334
AN - SCOPUS:85122702877
SN - 0195-9131
VL - 54
SP - 497
EP - 506
JO - Medicine and Science in Sports and Exercise
JF - Medicine and Science in Sports and Exercise
IS - 3
ER -